The murine lacrimal gland (LG), which produces crucial components of the ocular tear film, contains a population of NK cells. LG NK cells appear to belong to the conventional NK cell lineage, based on their cell surface receptor and transcription factor expression, absence in NFIL3−/− mice, and lack of RORγt expression during development. LG NK cells produce IFN-γ during the early stages of systemic murine CMV (MCMV) infection. This effector response occurs in the absence of noticeable MCMV replication in the LG, indicating that LG NK cells are being activated by soluble factors. However, the magnitude of LG NK cell IFN-γ production during MCMV infection is significantly lower than for spleen and liver NK cells. Adoptive-transfer experiments in lymphopenic mice revealed that this hyporesponsive phenotype is tissue specific, which indicates that LG NK cells can produce a robust effector response.

Innate lymphoid cells (ILCs) consist of diverse cell types that combat infectious microorganisms and cancer cells and help to maintain tissue homeostasis (1). The different subsets of ILCs are broadly classified as ILC1s, ILC2s, or ILC3s based on their developmental pathways and the cytokines that they produce at maturity (2). Conventional NK (cNK) cells are the prototypical ILC1s (3) that function mainly to induce apoptosis of virally infected cells and tumor cells (4). cNK cells develop from the common lymphoid progenitor in the bone marrow (5, 6) and mature before entering the circulation and traveling to lymphoid and nonlymphoid tissues (7).

In recent years, unique populations of NK cells have been identified in many different tissues. Some are cNK cells that take on altered phenotypes due to signals within the tissue environment (8), whereas others appear to be completely distinct ILC1 lineages. For instance, thymic NK cells have a unique phenotype and developmental pathway compared with cNK cells (9). Recently, populations of tissue-resident NK (trNK) cells have been identified in the liver, skin (10), kidney (11), uterus (12), and salivary gland (13, 14). These trNK cells represent distinct populations of ILC1s, which have unique phenotypes and developmental requirements compared with cNK cells. cNK cells require the transcription factor NFIL3 for development (1517) and express Eomes. trNK cells in most tissues are Eomes and develop at least partially independently of NFIL3 (1820). This is in contrast to evidence that NFIL3 is required for the development of all ILCs (2124).

The populations of cNK cells, trNK cells, and other ILCs in lymphoid and mucosal tissues have been well characterized (8, 19, 25, 26). Mucosal tissues are varied in structure and function, and their exposure to the external environment results in colonization by a wide variety of commensal and pathogenic microorganisms (27). NK cells and other ILCs are important for maintaining the composition and integrity of mucosal tissues, particularly in response to microbial colonization (28). However, the presence of ILCs in exocrine glands, such as the lacrimal gland (LG), has been relatively understudied. Exocrine glands secrete factors that help to maintain the integrity of mucosal and epithelial surfaces. The LG is essential for eye health, because it is responsible for producing the mucin and aqueous layers of the tear coating. The tear coating is necessary for normal eye function and protection from pathogens, because it supplies the eye with antimicrobial enzymes and protective Igs. Excessive inflammation can damage the LG, which can result in reduced tear production and damage to the ocular surface (29, 30).

The LG is known to contain populations of T cells and B cells (31). In this article, we report that the LG also has a population of NK cells. LG NK cells express Eomes and T-bet and are mostly absent in NFIL3−/− mice. This suggests that they develop from the cNK cell lineage. In support of this, we found that LG NK cells do not express RORγt during development, which indicates that they are not ex-ILC3s. Although we could not detect viral replication in this organ, LG NK cells mount an effector response during systemic murine CMV (MCMV) infection. However, this response is low in magnitude compared with splenic and liver NK cells. This weak response was found to be tissue specific, because LG NK cells produce similar levels of IFN-γ as splenic NK cells after acclimating to the spleen and liver following adoptive transfer into lymphopenic mice.

C57BL/6 and B6.SJL mice were purchased from Taconic Biosciences (Germantown, NY). A breeding pair of Rag2−/−IL-2Rγ−/− mice was purchased from Taconic Biosciences, and these mice were subsequently bred in-house. Rorc.cre and R26R-EYFP mice were purchased from the Jackson Laboratory (Bar Harbor, ME). Rorc.cre mice were bred with R26R-EYFP mice in-house to produce RORγt fate mapping mice. NFIL3−/− mice were a generous gift from Dr. H. J. M. Brady (15). NFIL3+/+, NFIL3+/−, and NFIL3−/− mice were subsequently bred in-house. All mice were maintained in pathogen-free facilities at Brown University. Mice of both sexes were included, and no differences were observed.

Mice were infected i.p. with 5 × 104 PFU MCMV (strain: RVG102), as previously described (32). In experiments with NK cell depletion, mice were initially injected i.p. with 100 μg of anti-NK1.1 (clone: PK136) 24 h prior to MCMV infection and again every 7 d until takedown. NK cell IFN-γ was measured directly ex vivo without culture following MCMV infection.

Mice were sacrificed with isoflurane, and cardiac puncture was performed prior to organ removal. Spleens were processed with a GentleMACS Dissociator (Miltenyi Biotec), filtered through nylon mesh, and layered onto a Lympholyte-M gradient (CEDARLANE Laboratories). Lymphocytes were harvested from the gradient interface and washed once in PBS supplemented with 1% FBS (1% PBS–serum). Alternatively, spleens were processed with ammonium chloride to lyse RBCs and enrich for lymphocytes. Livers were perfused with 1% PBS–serum before removal, processed in 1% PBS–serum with the GentleMACS Dissociator, and filtered through nylon mesh. Samples were washed three times with 1% PBS–serum, suspended in 40% Percoll, and layered on 70% Percoll. Lymphocytes were harvested from the gradient interface and washed once with 1% PBS–serum. Extraorbital LGs were processed in Collagenase IV or Liberase-DL (both from Sigma-Aldrich) with the GentleMACS Dissociator, incubated at 37°C for 10 min, filtered through nylon mesh, and washed once with 1% PBS–serum before being layered on a Lympholyte-M gradient. In some experiments, 6–12 LGs from three to six animals were pooled. Lymphocytes were harvested from the gradient interface and washed once in 1% PBS–serum.

Lymphocyte samples were incubated in 1% PBS–serum with the blocking mAb 2.4G2 and stained with specific mAbs for 20 min at 4°C. For intracellular cytokine staining, cells were stained with extracellular mAbs, fixed with Cytofix/Cytoperm (BD Biosciences) for 20 min, and stained with intracellular mAbs in 1× Perm/Wash (BD Biosciences) for 20 min. For intranuclear transcription factor staining, cells were stained with intracellular Abs using Foxp3 transcription factor staining reagents (BD Biosciences). Events were collected on a FACSAria III (BD Biosciences), and the data were analyzed using FlowJo software. Alexa Fluor 488–AsGM1, FITC-CD27, PE-TRAIL, PE–IFN-γ, PE–T-bet, PerCP–Cy5.5–NK1.1, PerCP–Cy5.5–TCRβ, PE–Cy5–DX5, PE–Cy7–NKp46, allophycocyanin-CD3, allophycocyanin-CD19, allophycocyanin-Ly49H, allophycocyanin-KLRG1, allophycocyanin–eFluor 780–CD45, allophycocyanin–eFluor 780–CD45.2, eFluor 450–CD3, eFluor 450–CD11b, eFluor 450–CD45.1, and eFluor 450–Eomes were purchased from eBioscience (Thermo Fisher Scientific). PE-CD49a, allophycocyanin-CD49a, BV421-CD127, BV510-TCRβ, BV570-CD45, BV605-CD3, and BV785-NK1.1 were purchased from BioLegend. FITC-DX5 was purchased from Miltenyi Biotec.

NK cells were sorted under sterile conditions from the spleens of C57BL/6 (CD45.2+) mice and the LGs of B6.SJL (CD45.1+) congenic mice. Donor NK cells were injected 1:1 into Rag2−/−IL-2Rγ−/− recipient mice. Recipient mice were allowed to reconstitute for 7 d before being infected i.p. with 5 × 104 PFU MCMV. At 38 h postinfection, the recipient mice were sacrificed.

Standard plaque assays were carried out, as previously described (33).

Lymphocytes from naive C57BL/6 spleen, liver, and LG were incubated for 4 h in RPMI 1640 complete media, RPMI 1640 with IL-12 (10 ng/ml) and IL-18 (10 ng/ml), or RPMI 1640 with PMA (20 ng/ml) and ionomycin (1 μg/ml). GolgiStop (BD Biosciences) was added at the beginning of the incubation. Cells were washed twice with 1% PBS–serum before Ab staining.

All statistical analyses were performed with Prism Version 7.0 (GraphPad). Unpaired two-tailed Student t tests were used to compare cell populations from different mice. Paired two-tailed Student t tests were used for experiments involving adoptive transfer (****p < 0.0001, ***p = 0.0001–0.001, **p = 0.001–0.01, *p = 0.01–0.05).

The LG is an exocrine gland that is similar in structure and function to the submandibular salivary gland (SMG) (29), which contains well-characterized populations of ILC1s (13, 14, 32, 34). We isolated lymphocytes from the extraorbital LG of naive C57BL/6 mice and found a population of CD3NK1.1+NKp46+ cells (Fig. 1A). The maturity of circulating NK cells is a four-stage developmental process, distinguished by expression of CD11b and CD27. NK cell maturity progresses from CD11blowCD27low, to CD11blowCD27high, CD11bhighCD27high, and, finally, CD11bhighCD27low (35). In comparison with spleen and liver NK cells, LG NK cells are relatively immature, having a very low frequency of CD11bhighCD27low cells (Fig. 1B) and low expression of KLRG1 (Fig. 1C). KLRG1 is generally expressed on fully mature CD11bhighCD27low NK cells (36), which further supports the classification of LG NK cells as relatively immature.

FIGURE 1.

The LG contains CD3NK1.1+NKp46+ lymphocytes. (A) Representative staining of spleen, liver, and LG NK cells. (B) Representative staining of CD11b and CD27 expression on spleen, liver, and LG NK cells. (C) Representative staining of KLRG1 expression on spleen, liver, and LG NK cells. Lymphocytes from three C57BL/6 mice were pooled in each experiment. Data are representative of three independent experiments.

FIGURE 1.

The LG contains CD3NK1.1+NKp46+ lymphocytes. (A) Representative staining of spleen, liver, and LG NK cells. (B) Representative staining of CD11b and CD27 expression on spleen, liver, and LG NK cells. (C) Representative staining of KLRG1 expression on spleen, liver, and LG NK cells. Lymphocytes from three C57BL/6 mice were pooled in each experiment. Data are representative of three independent experiments.

Close modal

In several organs, such as the liver, skin, uterus (10, 12, 37), and kidney (11), cNK cells can be distinguished from trNK cells based on surface expression of DX5 and CD49a. cNK cells are identified as DX5+CD49a, whereas trNK cells are DX5CD49a+. Liver trNK cells also express high levels of TRAIL at baseline (10). We found that LG NK cells are mainly DX5+ but some are also CD49a+. However, they cannot be easily defined as DX5+CD49a and DX5CD49a+ subsets, like the NK cells of the liver (Fig. 2A). Much like splenic NK cells and liver cNK cells, LG NK cells are mainly Eomes+T-bet+ (Fig. 2B) and TRAIL (Fig. 2C). Liver and kidney trNK cells were also recently shown to be largely negative for the surface receptor asialo-GM1 (AsGM1), which was once used as a marker to identify all NK cells (11). We observed that the majority of LG NK cells are AsGM1+ (Supplemental Fig. 1A) and CD127 (Supplemental Fig. 1B). However, differential expression of Eomes, DX5, CD49a, and other surface markers is not sufficient to distinguish cNK cells from trNK cells in all organs. For instance, SMG NK cells are mostly DX5+CD49a+, as well as Eomes+T-bet+ (13, 14). The majority of SMG NK cells are cNK cells; however, there is also a trNK cell population. These populations are distinguished based on differential requirements for the transcription factor NFIL3 during development (14). cNK cells are generally dependent on NFIL3 for development, whereas liver, skin, uterus, kidney, and SMG trNK cells develop somewhat independently of this transcription factor (1012, 20, 38). In the LG, we observed a significant decrease in NK cell frequency in NFIL3−/− mice compared with wild-type littermate controls (Fig. 3). Together, these data support the conclusion that the vast majority of LG NK cells belong to the conventional lineage.

FIGURE 2.

LG NK cells appear to be conventional in phenotype. (A) Representative staining of CD49a and DX5 expression on spleen, liver, and LG NK cells. (B) Representative staining of Eomes and T-bet expression in spleen, liver, and LG NK cells. (C) Representative staining of TRAIL expression on spleen, liver, and LG NK cells. Lymphocytes from three C57BL/6 mice were pooled in each experiment. Data are representative of three independent experiments.

FIGURE 2.

LG NK cells appear to be conventional in phenotype. (A) Representative staining of CD49a and DX5 expression on spleen, liver, and LG NK cells. (B) Representative staining of Eomes and T-bet expression in spleen, liver, and LG NK cells. (C) Representative staining of TRAIL expression on spleen, liver, and LG NK cells. Lymphocytes from three C57BL/6 mice were pooled in each experiment. Data are representative of three independent experiments.

Close modal
FIGURE 3.

LG NK cells are mostly NFIL3 dependent. (A) Representative staining of spleen, liver, and LG NK cells from NFIL3+/+ and NFIL3−/− mice. Lymphocytes from individual mice were stained. (B) Frequency of spleen, liver, and LG NK cells in NFIL3+/+ (n = 7) and NFIL3−/− (n = 9) mice. Data are pooled from four independent experiments. Error bars indicate SEM. ****p < 0.0001.

FIGURE 3.

LG NK cells are mostly NFIL3 dependent. (A) Representative staining of spleen, liver, and LG NK cells from NFIL3+/+ and NFIL3−/− mice. Lymphocytes from individual mice were stained. (B) Frequency of spleen, liver, and LG NK cells in NFIL3+/+ (n = 7) and NFIL3−/− (n = 9) mice. Data are pooled from four independent experiments. Error bars indicate SEM. ****p < 0.0001.

Close modal

Recent research has shown that some NKp46+ ILC3s downregulate RORγt expression, increase T-bet expression, and gain the ability to produce IFN-γ, effectively taking on an ILC1 phenotype (39, 40). This phenotypic plasticity has made it difficult to classify these ex-ILC3s as either ILC1s or ILC3s (28, 41). We investigated whether any of the LG NK cells were ex-ILC3s based on past RORγt expression by generating RORγt fate mapping mice. Mice that expressed cre recombinase under the control of the Rorc gene were crossed with those carrying the ROSA26–floxstop–YFP allele. In agreement with previous findings (39), we found that the resulting F1 mice had YFP expression in cells that had expressed RORγt during development (Supplemental Fig. 1C).

Using the RORγt fate mapping mice, we found that LG NK cells, as well as spleen NK and liver cNK cells, were mainly YFP (Fig. 4). This rules out the presence of ILC3s or ex-ILC3s within the LG CD3NK1.1+NKp46+ population. Interestingly, nearly 20% of liver trNK cells were positive for YFP (Fig. 4B). It is not known whether these cells are ex-ILC3s or whether some liver trNK cells express RORγt as part of an unknown developmental pathway.

FIGURE 4.

LG NK cells are not ex-ILC3s. (A) Representative expression of YFP on spleen NK, liver cNK and trNK, and LG NK cells from RORγT.cre.ROSA.YFP mice. Lymphocytes from individual mice were stained. (B) Frequency of YFP+ spleen NK, liver cNK and trNK, and LG NK cells from RORγT.cre.ROSA.YFP mice (n = 5). Data are pooled from two independent experiments. Error bars indicate SEM.

FIGURE 4.

LG NK cells are not ex-ILC3s. (A) Representative expression of YFP on spleen NK, liver cNK and trNK, and LG NK cells from RORγT.cre.ROSA.YFP mice. Lymphocytes from individual mice were stained. (B) Frequency of YFP+ spleen NK, liver cNK and trNK, and LG NK cells from RORγT.cre.ROSA.YFP mice (n = 5). Data are pooled from two independent experiments. Error bars indicate SEM.

Close modal

NK cells are crucial for the early control of many viral infections, including CMV (4244). The CMV family members all have strict species tropism, thus MCMV is often used as a model system to study the pathogenesis and immune response to human CMV. To investigate the effector response of LG NK cells, C57BL/6 mice were infected with MCMV, and NK cell IFN-γ production was assessed at 38 h, day 7, and day 14 postinfection. Previous studies have shown that the effector response of spleen NK cells peaks during the second day of MCMV infection (32). Spleen NK cells, liver cNK cells, and liver trNK cells produced a robust IFN-γ response at 38 h postinfection (Fig. 5). LG NK cells also produced IFN-γ at 38 h postinfection, but at a significantly lower magnitude (Fig. 5). This effector response only occurs during early MCMV infection, because LG NK cell IFN-γ production decreases by day 7 and returns to baseline by day 14 postinfection (Supplemental Fig. 1D). Interestingly, we also found that the frequency of LG NK cells increases dramatically at 38 h postinfection, before decreasing at day 7, as T cells infiltrate the organ. This is in contrast to the spleen, where the NK cell frequency decreases at 38 h postinfection (Supplemental Fig. 1E). However, the effector response of LG NK cells is less robust than that of NK cell populations in the spleen and liver.

FIGURE 5.

LG NK cells respond weakly to systemic MCMV infection. (A) Representative IFN-γ production by spleen NK and LG NK cells from C57BL/6 mice 38 h post-MCMV infection. Lymphocytes from individual mice were stained. (B) Frequency of IFN-γ+ spleen NK, liver cNK and trNK, and LG NK cells from C57BL/6 mice 38 h post-MCMV infection (n = 8). Data are pooled from three independent . Error bars indicate SEM. ****p < 0.0001, ***p = 0.0001–0.001, **p = 0.001–0.01.

FIGURE 5.

LG NK cells respond weakly to systemic MCMV infection. (A) Representative IFN-γ production by spleen NK and LG NK cells from C57BL/6 mice 38 h post-MCMV infection. Lymphocytes from individual mice were stained. (B) Frequency of IFN-γ+ spleen NK, liver cNK and trNK, and LG NK cells from C57BL/6 mice 38 h post-MCMV infection (n = 8). Data are pooled from three independent . Error bars indicate SEM. ****p < 0.0001, ***p = 0.0001–0.001, **p = 0.001–0.01.

Close modal

We previously reported that SMG NK cells are hyporesponsive to MCMV infection (32). However, we also showed that this phenotype is tissue specific and reversible (14). Thus, we investigated whether the weak effector response of LG NK cells to MCMV is also tissue specific. CD3NK1.1+NKp46+ lymphocytes were sorted from the spleen of C57BL/6 mice (CD45.2+) and the LG of B6.SJL mice (CD45.1+) and injected into recipient Rag2−/−IL-2Rγ−/− mice, which lack B cells, T cells, and ILCs. After 7 d, the recipient mice were infected with MCMV. Thirty-eight hours postinfection, IFN-γ production was assessed in NK cells recovered from the recipient spleen and liver.

Although donor spleen and LG NK cells were found in the recipient spleen and liver, neither of the donor populations traveled to the LG (Fig. 6A), which indicates that circulating NK cells are not recruited to the LG during MCMV infection. We also found that donor spleen and LG NK cells produced comparable levels of IFN-γ in the recipient spleen and liver (Fig. 6B, 6C). This result indicates that IFN-γ production by LG NK cells during systemic MCMV infection is limited by tissue-specific factors present in the LG but not the spleen or liver. This is further supported by the low level of IFN-γ produced by naive LG NK cells in vitro during IL-12 + IL-18 stimulation (Supplemental Fig. 2A). Naive LG NK cells stimulated with PMA + ionomycin produced similar levels of IFN-γ as did spleen and liver NK cells (Supplemental Fig. 2B).

FIGURE 6.

LG NK cell hyporesponsiveness is a tissue-specific phenotype. (A) Representative staining of donor NK cells in the spleen, liver, and LG of Rag2−/−IL-2Rγ−/− adoptive-transfer recipients. Lymphocytes from individual mice were stained. (B) Representative IFN-γ production by donor spleen and LG NK cells in the spleen and liver of Rag2−/−IL-2Rγ−/− adoptive-transfer recipients 38 h after MCMV infection. (C) Frequency of IFN-γ+ donor spleen and LG NK cells in the spleen and liver of Rag2−/−IL-2Rγ−/− adoptive-transfer recipients (n = 6) 38 h after MCMV infection. Data are pooled from three independent experiments. Error bars indicate SEM. **p = 0.001–0.01.

FIGURE 6.

LG NK cell hyporesponsiveness is a tissue-specific phenotype. (A) Representative staining of donor NK cells in the spleen, liver, and LG of Rag2−/−IL-2Rγ−/− adoptive-transfer recipients. Lymphocytes from individual mice were stained. (B) Representative IFN-γ production by donor spleen and LG NK cells in the spleen and liver of Rag2−/−IL-2Rγ−/− adoptive-transfer recipients 38 h after MCMV infection. (C) Frequency of IFN-γ+ donor spleen and LG NK cells in the spleen and liver of Rag2−/−IL-2Rγ−/− adoptive-transfer recipients (n = 6) 38 h after MCMV infection. Data are pooled from three independent experiments. Error bars indicate SEM. **p = 0.001–0.01.

Close modal

To determine whether MCMV replicates within the LG, C57BL/6 mice were infected with MCMV, and standard plaque assays were performed on homogenates of the spleen, SMG, and LG at 38 h and days 7, 14, and 21 postinfection. In agreement with previous reports, MCMV was detected in the spleen at 38 h postinfection (45) (Supplemental Fig. 2C) and in the SMG starting at day 7 and continuing to day 21 (46, 47) (Supplemental Fig. 2D). However, our analysis did not reveal viral plaques in the LG at any of the time points (data not shown). Because NK cells are a crucial component of the early immune response to MCMV, we also depleted C57BL/6 mice of NK cells. This treatment resulted in higher levels of viral replication in the spleen (Supplemental Fig. 2C) and SMG (Supplemental Fig. 2D); however, we still did not detect virus in the LG (data not shown).

For decades after their discovery, cNK cells were the only known innate lymphocytes. However, within the last few years, several subsets of ILCs have been identified and characterized in lymphoid tissues, mucosal tissues, and elsewhere (8, 19, 48). The various ILC subsets are broadly classified as ILC1s, ILC2s, and ILC3s. ILC1s constitutively express the transcription factor T-bet, as well as produce type 1 cytokines, such as IFN-γ and TNF-α (49, 50). cNK cells are included in the ILC1 group, along with other subsets of helper-like ILC1s. cNK cells are cytotoxic effector cells. Helper-like ILC1s produce type 1 cytokines but are generally considered noncytotoxic. cNK cells also diverge early from helper-like ILC1s in development (5153).

The growing diversity of ILC1s has called into question the dichotomous categorization of the various ILC1 subsets as either cytotoxic or helper-like. For instance, the trNK cells found in the liver are more closely related to other helper-like ILC1s than cNK cells. However, a recent study demonstrated that unlike mucosal helper-like ILC1s, liver trNK cells have high cytotoxic potential (38). Intraepithelial ILC1s have been identified in mucosal tissues and appear to be distinct from cNK cells, trNK cells, and other helper-like ILC1 subsets (54). These findings indicate that ILC1s cannot be simply classified as cytotoxic cNK cells and noncytotoxic/helper-like ILC1s; rather, ILC1 subsets exist along a continuum of diverse phenotypes.

In this study, we identified and characterized a population of ILC1s in the murine LG. LG NK cells appear to be relatively immature and display an unusual expression pattern of DX5 and CD49a. However, as we reported previously in the SMG (14), CD49a is not a definitive marker of trNK cells in all organs. LG NK cells primarily express T-bet and Eomes and are almost completely absent in NFIL3−/− mice. These findings indicate that LG NK cells are not NFIL3-independent ILC1s. Fate mapping experiments also showed that LG NK cells do not express the transcription factor RORγt during development, which indicates that they do not develop from an ILC3 lineage. Based on these data, we found it prudent to identify LG NK cells as conventional-like NK cells.

cNK cells are homogenous in terms of development, but they are not phenotypically uniform at maturity. Rather, they can take on unique phenotypes after they exit the bone marrow and acclimate to different tissues. For instance, NK cells of the lung appear to be derived from the conventional lineage but are more mature than splenic NK cells (8). They also express higher levels of inhibitory receptors, lower levels of activating receptors, and lower levels of migratory and adhesion molecules than do splenic NK cells (55). Based on our findings, the LG also contains a population of NK cells. These LG NK cells appear to be conventional in development, with a unique phenotype shaped by the tissue environment.

NK cells are crucial for the early defense against viral infections, particularly herpesviruses, such as CMV. Similar to the NK cells of the murine SMG (32), LG NK cells produce a weak effector response to systemic MCMV infection. However, this response is likely mediated by inflammatory cytokines, because we could not detect MCMV in this organ. When LG NK cells were removed from their native environment and allowed to proliferate in the spleen and liver of Rag2−/−IL-2Rγ−/− mice, they produced a similar level of IFN-γ as donor splenic NK cells (Fig. 6). Thus, LG NK cells are fully equipped to produce a robust effector response to MCMV infection. Much like SMG NK cells (14), the effector response of LG NK cells is suppressed by factors in their native environment. It is also possible that the weak effector response of LG NK cells in situ is due to the lack of viral replication in the LG during infection. However, we consider this unlikely, because Ly49H+ and Ly49H NK cells of the spleen and LG produce similar levels of IFN-γ during early MCMV infection (56) (Supplemental Fig. 2E). This indicates that direct contact with m157-expressing cells is not necessary for an NK cell IFN-γ response at this early time point in either organ.

In addition to killing virally infected cells and producing proinflammatory cytokines, NK cells can help to limit inflammation (57). This is especially important in secretory tissues, such as the SMG and LG, where extensive inflammation results in a phenotype resembling human Sjögren’s syndrome, an autoimmune disease characterized by a lack of saliva and tear production (58). The LG is a crucial exocrine gland that can be easily damaged by inflammation, and LG NK cells are capable of producing a potent proinflammatory immune response. It is possible that the effector response of LG NK cells is self-modulated or suppressed by other factors within the tissue to prevent inflammatory damage and the resulting lack of tear production. Further work will be necessary to determine the mechanisms behind this.

We thank Kevin Carlson for cell sorting, Céline Fugère for tail vein injections, Courtney K. Anderson for critical reading of the manuscript, and Dr. Hugh J. M. Brady for providing NFIL3−/− mice.

This work was supported by National Institutes of Health Grants AI46709 and AI122217 (to L.B.) and 1F31DE024360 (to T.K.E.).

The online version of this article contains supplemental material.

Abbreviations used in this article:

AsGM1

asialo-GM1

cNK

conventional NK

ILC

innate lymphoid cell

LG

lacrimal gland

MCMV

murine CMV

1% PBS–serum

PBS supplemented with 1% FBS

SMG

submandibular salivary gland

trNK

tissue-resident NK.

1
McKenzie
A. N.
,
H.
Spits
,
G.
Eberl
.
2014
.
Innate lymphoid cells in inflammation and immunity.
Immunity
41
:
366
374
.
2
Immunological Genome Consortium
.
2015
.
Transcriptional programs define molecular characteristics of innate lymphoid cell classes and subsets.
Nat. Immunol.
16
:
306
317
.
3
Vosshenrich
C. A.
,
J. P.
Di Santo
.
2013
.
Developmental programming of natural killer and innate lymphoid cells.
Curr. Opin. Immunol.
25
:
130
138
.
4
Lanier
L. L.
,
J. H.
Phillips
,
J.
Hackett
Jr.
,
M.
Tutt
,
V.
Kumar
.
1986
.
Natural killer cells: definition of a cell type rather than a function.
J. Immunol.
137
:
2735
2739
.
5
Carotta
S.
,
S. H.
Pang
,
S. L.
Nutt
,
G. T.
Belz
.
2011
.
Identification of the earliest NK-cell precursor in the mouse BM.
Blood
117
:
5449
5452
.
6
Fathman
J. W.
,
D.
Bhattacharya
,
M. A.
Inlay
,
J.
Seita
,
H.
Karsunky
,
I. L.
Weissman
.
2011
.
Identification of the earliest natural killer cell-committed progenitor in murine bone marrow.
Blood
118
:
5439
5447
.
7
Huntington
N. D.
,
C. A.
Vosshenrich
,
J. P.
Di Santo
.
2007
.
Developmental pathways that generate natural-killer-cell diversity in mice and humans.
Nat. Rev. Immunol.
7
:
703
714
.
8
Erick
T. K.
,
L.
Brossay
.
2016
.
Phenotype and functions of conventional and non-conventional NK cells.
Curr. Opin. Immunol.
38
:
67
74
.
9
Di Santo
J. P.
,
C. A.
Vosshenrich
.
2006
.
Bone marrow versus thymic pathways of natural killer cell development.
Immunol. Rev.
214
:
35
46
.
10
Sojka
D. K.
,
B.
Plougastel-Douglas
,
L.
Yang
,
M. A.
Pak-Wittel
,
M. N.
Artyomov
,
Y.
Ivanova
,
C.
Zhong
,
J. M.
Chase
,
P. B.
Rothman
,
J.
Yu
, et al
.
2014
.
Tissue-resident natural killer (NK) cells are cell lineages distinct from thymic and conventional splenic NK cells.
Elife
3
:
e01659
.
11
Victorino
F.
,
D. K.
Sojka
,
K. S.
Brodsky
,
E. N.
McNamee
,
J. C.
Masterson
,
D.
Homann
,
W. M.
Yokoyama
,
H. K.
Eltzschig
,
E. T.
Clambey
.
2015
.
Tissue-resident NK cells mediate ischemic kidney injury and are not depleted by anti-asialo-GM1 antibody.
J. Immunol.
195
:
4973
4985
.
12
Doisne
J. M.
,
E.
Balmas
,
S.
Boulenouar
,
L. M.
Gaynor
,
J.
Kieckbusch
,
L.
Gardner
,
D. A.
Hawkes
,
C. F.
Barbara
,
A. M.
Sharkey
,
H. J.
Brady
, et al
.
2015
.
Composition, development, and function of uterine innate lymphoid cells.
J. Immunol.
195
:
3937
3945
.
13
Cortez
V. S.
,
A.
Fuchs
,
M.
Cella
,
S.
Gilfillan
,
M.
Colonna
.
2014
.
Cutting edge: salivary gland NK cells develop independently of Nfil3 in steady-state.
J. Immunol.
192
:
4487
4491
.
14
Erick
T. K.
,
C. K.
Anderson
,
E. C.
Reilly
,
J. R.
Wands
,
L.
Brossay
.
2016
.
NFIL3 expression distinguishes tissue-resident NK cells and conventional NK-like cells in the mouse submandibular glands.
J. Immunol.
197
:
2485
2491
.
15
Gascoyne
D. M.
,
E.
Long
,
H.
Veiga-Fernandes
,
J.
de Boer
,
O.
Williams
,
B.
Seddon
,
M.
Coles
,
D.
Kioussis
,
H. J.
Brady
.
2009
.
The basic leucine zipper transcription factor E4BP4 is essential for natural killer cell development.
Nat. Immunol.
10
:
1118
1124
.
16
Male
V.
,
I.
Nisoli
,
T.
Kostrzewski
,
D. S.
Allan
,
J. R.
Carlyle
,
G. M.
Lord
,
A.
Wack
,
H. J.
Brady
.
2014
.
The transcription factor E4bp4/Nfil3 controls commitment to the NK lineage and directly regulates Eomes and Id2 expression.
J. Exp. Med.
211
:
635
642
.
17
Kamizono
S.
,
G. S.
Duncan
,
M. G.
Seidel
,
A.
Morimoto
,
K.
Hamada
,
G.
Grosveld
,
K.
Akashi
,
E. F.
Lind
,
J. P.
Haight
,
P. S.
Ohashi
, et al
.
2009
.
Nfil3/E4bp4 is required for the development and maturation of NK cells in vivo.
J. Exp. Med.
206
:
2977
2986
.
18
Daussy
C.
,
F.
Faure
,
K.
Mayol
,
S.
Viel
,
G.
Gasteiger
,
E.
Charrier
,
J.
Bienvenu
,
T.
Henry
,
E.
Debien
,
U. A.
Hasan
, et al
.
2014
.
T-bet and Eomes instruct the development of two distinct natural killer cell lineages in the liver and in the bone marrow.
J. Exp. Med.
211
:
563
577
.
19
Sojka
D. K.
,
Z.
Tian
,
W. M.
Yokoyama
.
2014
.
Tissue-resident natural killer cells and their potential diversity.
Semin. Immunol.
26
:
127
131
.
20
Crotta
S.
,
A.
Gkioka
,
V.
Male
,
J. H.
Duarte
,
S.
Davidson
,
I.
Nisoli
,
H. J.
Brady
,
A.
Wack
.
2014
.
The transcription factor E4BP4 is not required for extramedullary pathways of NK cell development.
J. Immunol.
192
:
2677
2688
.
21
Yu
X.
,
Y.
Wang
,
M.
Deng
,
Y.
Li
,
K. A.
Ruhn
,
C. C.
Zhang
,
L. V.
Hooper
.
2014
.
The basic leucine zipper transcription factor NFIL3 directs the development of a common innate lymphoid cell precursor.
eLife
3
: e04406.
22
Seillet
C.
,
L. C.
Rankin
,
J. R.
Groom
,
L. A.
Mielke
,
J.
Tellier
,
M.
Chopin
,
N. D.
Huntington
,
G. T.
Belz
,
S.
Carotta
.
2014
.
Nfil3 is required for the development of all innate lymphoid cell subsets.
J. Exp. Med.
211
:
1733
1740
.
23
Geiger
T. L.
,
M. C.
Abt
,
G.
Gasteiger
,
M. A.
Firth
,
M. H.
O’Connor
,
C. D.
Geary
,
T. E.
O’Sullivan
,
M. R.
van den Brink
,
E. G.
Pamer
,
A. M.
Hanash
,
J. C.
Sun
.
2014
.
Nfil3 is crucial for development of innate lymphoid cells and host protection against intestinal pathogens.
J. Exp. Med.
211
:
1723
1731
.
24
Xu
W.
,
R. G.
Domingues
,
D.
Fonseca-Pereira
,
M.
Ferreira
,
H.
Ribeiro
,
S.
Lopez-Lastra
,
Y.
Motomura
,
L.
Moreira-Santos
,
F.
Bihl
,
V.
Braud
, et al
.
2015
.
NFIL3 orchestrates the emergence of common helper innate lymphoid cell precursors.
Cell Rep.
10
:
2043
2054
.
25
Artis
D.
,
H.
Spits
.
2015
.
The biology of innate lymphoid cells.
Nature
517
:
293
301
.
26
Yokoyama
W. M.
,
D. K.
Sojka
,
H.
Peng
,
Z.
Tian
.
2013
.
Tissue-resident natural killer cells.
Cold Spring Harb. Symp. Quant. Biol.
78
:
149
156
.
27
McGhee
J. R.
,
K.
Fujihashi
.
2012
.
Inside the mucosal immune system.
PLoS Biol.
10
:
e1001397
.
28
Sonnenberg
G. F.
,
D.
Artis
.
2015
.
Innate lymphoid cells in the initiation, regulation and resolution of inflammation.
Nat. Med.
21
:
698
708
.
29
Conrady
C. D.
,
Z. P.
Joos
,
B. C.
Patel
.
2016
.
Review: the lacrimal gland and its role in dry eye.
J. Ophthalmol.
2016
:
7542929
.
30
Knop
E.
,
N.
Knop
.
2005
.
The role of eye-associated lymphoid tissue in corneal immune protection.
J. Anat.
206
:
271
285
.
31
Saitoh-Inagawa
W.
,
T.
Hiroi
,
M.
Yanagita
,
H.
Iijima
,
E.
Uchio
,
S.
Ohno
,
K.
Aoki
,
H.
Kiyono
.
2000
.
Unique characteristics of lacrimal glands as a part of mucosal immune network: high frequency of IgA-committed B-1 cells and NK1.1+ alphabeta T cells.
Invest. Ophthalmol. Vis. Sci.
41
:
138
144
.
32
Tessmer
M. S.
,
E. C.
Reilly
,
L.
Brossay
.
2011
.
Salivary gland NK cells are phenotypically and functionally unique.
PLoS Pathog.
7
:
e1001254
.
33
Reilly
E. C.
,
E. A.
Thompson
,
S.
Aspeslagh
,
J. R.
Wands
,
D.
Elewaut
,
L.
Brossay
.
2012
.
Activated iNKT cells promote memory CD8+ T cell differentiation during viral infection.
PLoS One
7
:
e37991
.
34
Cortez
V. S.
,
L.
Cervantes-Barragan
,
M. L.
Robinette
,
J. K.
Bando
,
Y.
Wang
,
T. L.
Geiger
,
S.
Gilfillan
,
A.
Fuchs
,
E.
Vivier
,
J. C.
Sun
, et al
.
2016
.
Transforming growth factor-β signaling guides the differentiation of innate lymphoid cells in salivary glands.
Immunity
44
:
1127
1139
.
35
Chiossone
L.
,
J.
Chaix
,
N.
Fuseri
,
C.
Roth
,
E.
Vivier
,
T.
Walzer
.
2009
.
Maturation of mouse NK cells is a 4-stage developmental program.
Blood
113
:
5488
5496
.
36
Huntington
N. D.
,
H.
Tabarias
,
K.
Fairfax
,
J.
Brady
,
Y.
Hayakawa
,
M. A.
Degli-Esposti
,
M. J.
Smyth
,
D. M.
Tarlinton
,
S. L.
Nutt
.
2007
.
NK cell maturation and peripheral homeostasis is associated with KLRG1 up-regulation.
J. Immunol.
178
:
4764
4770
.
37
Peng
H.
,
X.
Jiang
,
Y.
Chen
,
D. K.
Sojka
,
H.
Wei
,
X.
Gao
,
R.
Sun
,
W. M.
Yokoyama
,
Z.
Tian
.
2013
.
Liver-resident NK cells confer adaptive immunity in skin-contact inflammation.
J. Clin. Invest.
123
:
1444
1456
.
38
Tang
L.
,
H.
Peng
,
J.
Zhou
,
Y.
Chen
,
H.
Wei
,
R.
Sun
,
W. M.
Yokoyama
,
Z.
Tian
.
2016
.
Differential phenotypic and functional properties of liver-resident NK cells and mucosal ILC1s.
J. Autoimmun.
67
:
29
35
.
39
Vonarbourg
C.
,
A.
Mortha
,
V. L.
Bui
,
P. P.
Hernandez
,
E. A.
Kiss
,
T.
Hoyler
,
M.
Flach
,
B.
Bengsch
,
R.
Thimme
,
C.
Hölscher
, et al
.
2010
.
Regulated expression of nuclear receptor RORγt confers distinct functional fates to NK cell receptor-expressing RORγt(+) innate lymphocytes.
Immunity
33
:
736
751
.
40
Klose
C. S.
,
E. A.
Kiss
,
V.
Schwierzeck
,
K.
Ebert
,
T.
Hoyler
,
Y.
d’Hargues
,
N.
Göppert
,
A. L.
Croxford
,
A.
Waisman
,
Y.
Tanriver
,
A.
Diefenbach
.
2013
.
A T-bet gradient controls the fate and function of CCR6-RORγt+ innate lymphoid cells.
Nature
494
:
261
265
.
41
Spits
H.
,
J. H.
Bernink
,
L.
Lanier
.
2016
.
NK cells and type 1 innate lymphoid cells: partners in host defense.
Nat. Immunol.
17
:
758
764
.
42
Welsh
R. M.
,
J. O.
Brubaker
,
M.
Vargas-Cortes
,
C. L.
O’Donnell
.
1991
.
Natural killer (NK) cell response to virus infections in mice with severe combined immunodeficiency. The stimulation of NK cells and the NK cell-dependent control of virus infections occur independently of T and B cell function.
J. Exp. Med.
173
:
1053
1063
.
43
McIntyre
K. W.
,
R. M.
Welsh
.
1986
.
Accumulation of natural killer and cytotoxic T large granular lymphocytes in the liver during virus infection.
J. Exp. Med.
164
:
1667
1681
.
44
Loh
J.
,
D. T.
Chu
,
A. K.
O’Guin
,
W. M.
Yokoyama
,
H. W.
Virgin
IV
.
2005
.
Natural killer cells utilize both perforin and gamma interferon to regulate murine cytomegalovirus infection in the spleen and liver.
J. Virol.
79
:
661
667
.
45
Allan
J. E.
,
G. R.
Shellam
.
1984
.
Genetic control of murine cytomegalovirus infection: virus titres in resistant and susceptible strains of mice.
Arch. Virol.
81
:
139
150
.
46
Henson
D.
,
A. J.
Strano
.
1972
.
Mouse cytomegalovirus. Necrosis of infected and morphologically normal submaxillary gland acinar cells during termination of chronic infection.
Am. J. Pathol.
68
:
183
202
.
47
Lucin
P.
,
I.
Pavić
,
B.
Polić
,
S.
Jonjić
,
U. H.
Koszinowski
.
1992
.
Gamma interferon-dependent clearance of cytomegalovirus infection in salivary glands.
J. Virol.
66
:
1977
1984
.
48
Diefenbach
A.
,
M.
Colonna
,
S.
Koyasu
.
2014
.
Development, differentiation, and diversity of innate lymphoid cells.
Immunity
41
:
354
365
.
49
Spits
H.
,
D.
Artis
,
M.
Colonna
,
A.
Diefenbach
,
J. P.
Di Santo
,
G.
Eberl
,
S.
Koyasu
,
R. M.
Locksley
,
A. N.
McKenzie
,
R. E.
Mebius
, et al
.
2013
.
Innate lymphoid cells--a proposal for uniform nomenclature.
Nat. Rev. Immunol.
13
:
145
149
.
50
Walker
J. A.
,
J. L.
Barlow
,
A. N.
McKenzie
.
2013
.
Innate lymphoid cells--how did we miss them?
Nat. Rev. Immunol.
13
:
75
87
.
51
Constantinides
M. G.
,
B. D.
McDonald
,
P. A.
Verhoef
,
A.
Bendelac
.
2014
.
A committed precursor to innate lymphoid cells.
Nature
508
:
397
401
.
52
Constantinides
M. G.
,
H.
Gudjonson
,
B. D.
McDonald
,
I. E.
Ishizuka
,
P. A.
Verhoef
,
A. R.
Dinner
,
A.
Bendelac
.
2015
.
PLZF expression maps the early stages of ILC1 lineage development.
Proc. Natl. Acad. Sci. USA
112
:
5123
5128
.
53
Klose
C. S.
,
M.
Flach
,
L.
Möhle
,
L.
Rogell
,
T.
Hoyler
,
K.
Ebert
,
C.
Fabiunke
,
D.
Pfeifer
,
V.
Sexl
,
D.
Fonseca-Pereira
, et al
.
2014
.
Differentiation of type 1 ILCs from a common progenitor to all helper-like innate lymphoid cell lineages.
Cell
157
:
340
356
.
54
Fuchs
A.
,
W.
Vermi
,
J. S.
Lee
,
S.
Lonardi
,
S.
Gilfillan
,
R. D.
Newberry
,
M.
Cella
,
M.
Colonna
.
2013
.
Intraepithelial type 1 innate lymphoid cells are a unique subset of IL-12- and IL-15-responsive IFN-γ-producing cells.
Immunity
38
:
769
781
.
55
Wang
J.
,
F.
Li
,
M.
Zheng
,
R.
Sun
,
H.
Wei
,
Z.
Tian
.
2012
.
Lung natural killer cells in mice: phenotype and response to respiratory infection.
Immunology
137
:
37
47
.
56
Geurs
T. L.
,
Y. M.
Zhao
,
E. B.
Hill
,
A. R.
French
.
2009
.
Ly49H engagement compensates for the absence of type I interferon signaling in stimulating NK cell proliferation during murine cytomegalovirus infection.
J. Immunol.
183
:
5830
5836
.
57
Lünemann
A.
,
J. D.
Lünemann
,
C.
Münz
.
2009
.
Regulatory NK-cell functions in inflammation and autoimmunity.
Mol. Med.
15
:
352
358
.
58
Ohyama
Y.
,
V. A.
Carroll
,
U.
Deshmukh
,
F.
Gaskin
,
M. G.
Brown
,
S. M.
Fu
.
2006
.
Severe focal sialadenitis and dacryoadenitis in NZM2328 mice induced by MCMV: a novel model for human Sjögren’s syndrome.
J. Immunol.
177
:
7391
7397
.

The authors have no financial conflicts of interest.

This article is distributed under the terms of the CC BY-NC 4.0 Unported license.

Supplementary data