Interactions between the epithelial and lymphocytic components of the thymus are required for T cell maturation, yet the molecular bases for these interactions remain elusive. In the development and function of other endodermally derived organs, glycosaminoglycan-containing proteins are known to play a critical role. In contrast, virtually nothing is known about the macromolecules that are major constituents of thymic interstitial spaces. For these reasons, we undertook metabolic labeling studies in vitro with D-(6-3H)glucosamine and 35SO4(-2) to begin to characterize systematically the relative amounts and types of glycosaminoglycans made by enriched subpopulations of cells within the thymus. Hydrocortisone, which depletes the thymus of 90% of its lymphocytes, was used both to enrich for epithelium-derived glycoconjugates and to determine if significant alterations in glycoconjugate metabolism accompany drug-induced premature thymic involution. Results indicate: 1) glycosaminoglycans account for a substantial proportion of the total glycoconjugates synthesized by both thymocytes and epithelium; 2) Glycosaminoglycans show a tissue-specific distribution. Hyaluronic acid is the major glycosaminoglycan synthesized by thymic epithelium, whereas it accounts for less than 15% of the total glycosaminoglycans made by thymocytes; 3) Similar proportions of sulfated glycosaminoglycans are made by thymic epithelium and thymocytes. Chondroitin sulfates predominate (75 to 90%) over heparan sulfates (10 to 25%). Chondroitin sulfates from both nonstimulated thymocytes and epithelium are nearly exclusively sulfated at the 4-position of their N-acetylgalactosamine residues; 4) The major high m.w. glycoconjugate of thymocytes, however, is nonsulfated and is resistant to pronase, hyaluronidase, chondroitinase ABC, nitrous acid, keratanase, and neuraminidase; 5) Although hydrocortisone treatment causes a dramatic inhibitory effect on the incorporation of radioactivity into smaller oligosaccharide side-chains by "cortisone-resistant" thymocytes, the drug exerts negligible effects on the metabolism of glycoconjugates by epithelium. These data, which quantify and categorize the complex arrays of glycoconjugates synthesized by the major cell types of the thymus, establish the necessary foundations for further investigations into the functional roles of these glycoconjugates in thymic epithelium-induced maturation of T lymphocytes.

This content is only available via PDF.
You do not currently have access to this content.