The class II antigens from four inbred strains of Xenopus laevis (r, f, g, and j haplotypes) and six gynogenetic LG clones (two Xenopus laevis, two Xenopus gilli haplotypes) with functionally well-defined MHC types have been immunoprecipitated with the rabbit anti-human class II beta-chain serum anti-p29boost and analyzed by two-dimensional gel electrophoresis. The glycosylated material from 15-hr biosynthetically labeled cells runs as a broad fuzzy band around 33kD that, upon removal of N-linked glycans by Endo F, resolves into upper beta-chain bands and lower alpha-chain bands. Both the glycosylated and deglycosylated class II antigens give rise to multiple IEF spots in evenly spaced arrays (alpha-chain: two to eight spots in one to three arrays, beta-chain: two to 12 spots in one to five arrays). Both chains are polymorphic and both map to the functionally defined MHC. The large number of spots argues for multiple class II antigens; by radioactive N-terminal sequencing, two homologous alpha-chains and five beta-chains are present in the f haplotype. By comparison with MHC-linked alloantisera, anti-p29boost recognizes all major polymorphic class II molecules in Xenopus laevis. A selection of outbred animals were typed by using an IEF procedure requiring only a million PHA-stimulated blood cells.

This content is only available via PDF.
You do not currently have access to this content.