Glycosidic enzymes were used as probes to analyze the mechanism of NK cell-mediated cytotoxicity. Pretreatment of nylon wool-enriched CBA/J spleen cells, a murine NK clone, or human peripheral blood lymphocytes (PBL) with alpha-mannosidase, an exoglycosidase, led to a marked dose-dependent inhibition of NK lytic activity against YAC-1.2 or K562 tumor cells. Maximal inhibition occurred after a 60-min pretreatment of murine effectors at 37 degrees C, and the kinetics of NK inhibition by alpha-mannosidase was similar to the reported kinetics for enzymatic activity. Released hexose was detected chemically in the supernatant of mouse spleen cells treated with NK inhibitory dose of alpha-mannosidase, and inactivation of enzymatic function with EDTA reversed the NK inhibitory effect. These results suggest that alpha-mannosidase inhibited NK function by virtue of its enzymatic action. Culture of human PBL for 20-hr after treatment with this enzyme led to a greater than 70% recovery in NK lytic function. Recovery was blocked by incorporating tunicamycin, a glycosylation inhibitor of asparagine-linked glycoproteins, into the culture medium. These results suggest that the alpha-mannosidase-sensitive site may be de novo synthesized glycoprotein. Neuraminidase, beta-galactosidase, endo-beta-N-acetylglucosaminidase-D and H, and peptide-N-glycosidase treatments did not inhibit human NK cell lysis of K562 cells. Pretreatment of nylon wool-enriched CBA/J spleen cells or Percoll-enriched human LGL with alpha-mannosidase did not influence their capacity to bind YAC 1.2 target cells or K562 target cells, respectively, Ca++ pulse experiments revealed that the alpha-mannosidase-sensitive site on the NK cells was involved after target-effector binding but before the Ca++ influx. Pretreatment of effector cells with this enzyme which normally occurs after effector-target cell interaction. These results suggest that the phospholipid methylation reaction is coupled to the alpha-mannosidase-sensitive site on the NK cells. By analogy to other physiologic systems, such as histamine release in mast cells, the triggering of phospholipid methylation in the NK cells may serve as a mechanism for signal transduction across the plasma membrane.

This content is only available via PDF.
You do not currently have access to this content.