Recent work in our laboratory has demonstrated that the repeated injections of high doses of recombinant interleukin 2 (IL 2) can dramatically reduce the number of established pulmonary and hepatic metastases and the growth of intradermal tumors in a variety of murine tumor models. We have thus undertaken studies to define the mechanisms underlying these in vivo effects of IL 2. Using an in vivo DNA-labeling technique in which we employed 5-[125I]iodo-2'-deoxyuridine (125IUdR), we examined the in vivo cell proliferation in the tissues of mice treated with IL 2. A proliferation index (PI) was calculated by dividing the raw counts per minute (cpm) of tissues in IL 2-treated mice by the cpm in corresponding tissues of control animals. At an IL 2 dose of 6000 U given i.p. three times a day, the highest 125IUdR incorporation was seen in the lungs, liver, spleen, kidneys, and mesenteric lymph nodes (PI = 6.9, 6.9, 5.1, 7.1, 24.6, respectively, at 5 days). The amount of lymphoid proliferation in these organs was a direct function of the dose of IL 2 administered. Other tissues including thymus, intestines, skin, and hind limb showed no significant increase in 125IUdR uptake even after host treatment with the highest doses of IL 2. Blood and brain demonstrated intermediate incorporation of the radiolabel. Preirradiation of the host largely eliminated the proliferative response to IL 2. Histologic studies of normal and irradiated mice receiving IL 2 corroborated the result of the 125IUdR findings. In normal IL 2-treated mice, large collections of activated lymphoid cells were seen, most prominently in the lungs, liver, and kidneys, whereas markedly decreased lymphoid proliferation was evident histologically in preirradiated mice. A fluorescein-labeled monoclonal antibody directed against the Thy-1.2 surface determinant was used to identify these dividing cells in frozen tissue sections as T lymphoid cells. Activated lymphocytes isolated from the lungs, liver, spleen, and mesenteric lymph nodes of IL 2-treated mice demonstrated significant lysis of a fresh murine sarcoma target in short-term 51Cr-release assays. These studies demonstrate that the systemic administration of recombinant IL 2 causes in vivo activation and proliferation of host lymphoid cells and has important implications for the adoptive immunotherapy of tumors.

This content is only available via PDF.
You do not currently have access to this content.