The potential role of cytolytic macrophages in in vivo resistance to tumors induced by simian virus 40 (SV40) was evaluated in two experimental systems. First, a cell line produced by sequential in vivo passage of SV40-transformed fibroblasts through syngeneic C3H/HeJ mice was found to develop both increased neoplastic character and resistance to macrophage-mediated lysis, suggesting in vivo selection pressure against the macrophage-sensitive phenotype. In the second approach, SV40-transformed cells from C3H.OL mice, a strain that fails to produce SV40-specific cytolytic T lymphocytes (CTL), were cloned, and the cloned cells were tested for susceptibility to macrophage cytolysis in vitro. Two clones SV-COL-E8 and SV-COL-F5, which represent the extremes of macrophage susceptibility and resistance, respectively, were tested for progressive growth in syngeneic C3H.OL recipients. Progression in vivo was found to correlate with resistance to macrophage cytolysis in vitro. Other in vitro measures of the neoplastic phenotype, cell division rate and anchorage-independent growth, did not predict the relative abilities of clones E8 and F5 to form tumors. Likewise, the cells were indistinguishable in their sensitivity to cytolysis by allogeneic CTL and by natural killer cells. Finally, the presence of activated macrophages in the peritoneum of mice rejecting a challenge of syngeneic SV40-transformed cells was confirmed in both CTL responder and nonresponder strains. These studies suggest that cytolytic macrophages are indeed generated during rejection of SV40-induced mouse tumors and that, in the absence of an effective anti-SV40 CTL response, resistance of the transformed cell to macrophage-mediated cytolysis can be a determining factor in in vivo tumor growth.

This content is only available via PDF.
You do not currently have access to this content.