The role of surface-bound type Ia group B Streptococcus (GBS) capsular polysaccharide in antibody-independent binding of C1 and activation of the classic complement pathway was investigated. In a radiolabeled bacterial-polymorphonuclear leukocyte (PMN) association assay, a measure of bacterial opsonization, preincubation of 3H-type Ia GBS with purified F(ab')2 to the organism blocked the association of the bacteria with PMN', and the inhibitory effect was dose dependent. The specificity of F(ab')2 blocking was shown after adsorption of F(ab')2 with type Ia polysaccharide-sensitized erythrocytes. Polysaccharide-adsorbed F(ab')2 had a 70% decrease in ability to block the association of bacteria with PMN. Evidence for the requirement of the capsular polysaccharide in classic complement pathway activation came from a C1 transfer assay with the use of neuraminidase-digested type Ia GBS. Neuraminidase digestion removed 80% of the terminal sialic acid residues from the native polysaccharide. These neuraminidase-digested organisms had a 72% decrease in binding and transfer of purified C1 compared with non-enzyme-treated organisms. Type Ia capsular polysaccharide bound to sheep erythrocytes promoted classic complement pathway-mediated hemolysis of the cells. The role of C1 inhibitor (INH) in modulation of C1 activation by the organisms was investigated. The possibility existed that the C1 INH could be bound by the bacteria, allowing C1 activation to occur in the fluid phase. The inhibitor was purified from human serum, and its activity was measured before and after incubation with type Ia GBS. The organisms had no effect on C1 INH activity. Thus surface-bound capsular polysaccharide of type Ia GBS mediates C1 binding and classic pathway activation, and this does not involve the C1 INH.

This content is only available via PDF.
You do not currently have access to this content.