Monoclonal antibodies against the CD3 antigen and certain lectins can induce interleukin 2 dependent antigen-specific T cell clones to mediate non-antigen specific cytotoxicity. On the basis of this observation, we predicted that it may be possible to identify cytotoxic T lymphocytes (CTL) in peripheral blood without knowing the antigen specificity of these in vivo primed CTL. By using this strategy, peripheral blood lymphocytes were separated into low and high-density fractions on Percoll gradients and were tested for cytotoxic activity in the presence or absence of concanavalin A (Con A) or anti-Leu-4 antibody. Lectin-dependent cellular cytotoxicity (LDCC) and anti-CD3 induced cytotoxicity against both natural killer (NK)-insensitive and NK-sensitive targets were exclusively mediated by low-density CD3+ T lymphocytes. Additional studies indicated that low-density CD3+ T lymphocytes co-expressing Leu-7 antigen preferentially mediated this activity, although in some individuals, significant activity was also observed in the low-density T cells lacking Leu-7. In contrast, high-density CD3+ T lymphocytes and CD16+ (Leu-11+) NK cells (both Leu-7 and Leu-7+) did not mediate nonantigen-specific cytotoxicity under these conditions. The finding that NK cell-mediated cytotoxicity was unaffected by these lectins refutes the hypothesis that lectin-dependent cellular cytotoxicity is simply a result of effector and target agglutination. T cell-mediated cytotoxicity was both lectin and antibody specific. Phytohemagglutinin, Con A, and pokeweed mitogen induced cytolytic activity in the Leu-7+ T cells, whereas wheat germ agglutinin did not. Of the antibodies against T cell-associated differentiation antigens (anti-Leu-2,3,4, and 5), only anti-Leu-4 induced cytotoxicity. This anti-CD3-induced cytotoxicity was essentially completely inhibited by the presence of anti-LFA-1 or anti-CD2 monoclonal antibodies, implicating these molecules in the triggering process. A proportion of the CD3+, Leu-7+ CTL expressed HLA-DR antigens, indicating possible in vivo activation. Because previous clinical studies have indicated that lymphocytes with this phenotype may be elevated in clinical situations associated with immunosuppression and chronic viral infection, this unique subset of CD3+ T lymphocytes may represent a population of in vivo primed CTL possibly against viral antigens.

This content is only available via PDF.
You do not currently have access to this content.