We have demonstrated that immune complexes turn over C1, i.e., limiting quantities of immune complexes activate an excess of C1. This was readily apparent in a system of purified C1 and C1-inhibitor (C1-In) but not in normal human serum (NHS). The following results indicate that C3 and C4 are the serum factors responsible for the inhibition of C1 turnover by immune complexes. 1) In a purified protein system composed of C1 and C1-In at pH 7.5, ionic strength 0.14 M, doses of immune complexes that activated all the C1 in 60 min at 37 degrees C yielded no detectable C1 activation when C2, C3, and C4 were also present. All proteins were at their physiologic concentrations. Activation was quantified by SDS-PAGE analysis and hemolytic titration 2) In order to inactivate C3 and C4, NHS was treated with 50 mM methylamine (MeAm) for 15 min at 37 degrees C, after which the MeAm was removed by dialysis. The activities of C1, C2, and C1-In were unaffected by this treatment. Doses of immune complexes that consumed no C1 in NHS, consumed all the C1 in MeAm-treated NHS (MeAm-NHS). 3) Reconstitution of MeAm-NHS with physiologic concentrations of C3 and C4 rendered the serum again resistant to excessive C1 consumption by immune complexes. Immune complexes used in these studies included EA-IgG, EA-IgM, tetanus-human anti-tetanus, and aggregated human IgG. There appeared to be specificity to the inhibition reaction since C4 by itself could inhibit C1 consumption by EA-IgM, whereas the presence of C3 was also required to control EA-IgG. Finally, N-acetyl-L-tyrosine was added to NHS at a final concentration of 30 mM. This nucleophile did not interact with native C3 or C4, nor did it directly activate C1. However, upon the addition of low doses of immune complexes, acetyl tyrosine did yield uncontrolled C1 activation, presumably by binding nascent C3b and C4b and thereby blocking their attachment to the immune complexes. We conclude that in NHS there is a mechanism of feedback inhibition by which nascent C3b and C4b inhibit C1 turnover by immune complexes. This mechanism of control might be physiologically important in that it prevents excessive complement activation by low concentrations of immune complexes.

This content is only available via PDF.
You do not currently have access to this content.