Bronchoconstriction in extrinsic asthma is initiated by mediators released from IgE-sensitized leukocytes after contact with polyvalent antigen. Because platelets also contain soluble mediators that can cause bronchoconstriction, platelet activation and release of the contents of platelet granules may play a role in IgE-mediated responses under some circumstances. We therefore sought to determine if platelets are capable of binding IgE and if cross-linking this cell-bound IgE initiates secretion of platelet granule contents. Platelets from 10 normal donors were studied by using automated fluorescence analysis and fluorescence microscopy. We detected binding of a purified myeloma IgE protein to 24.1 +/- 9.6% (mean +/- 2 SD) of the gel-filtered platelets from these normal individuals. Although we could detect the binding of IgE and anti-IgE to a minority of cells, every normal individual had a population of platelets that bound IgE. The amount of IgE that bound to normal platelets appeared to be distributed heterogeneously among the IgE-positive platelet population. Platelets from two individuals with type II Glanzmann's thrombasthenia bound normal amounts of heat-aggregated IgG, but less than 3% of the platelets bound detectable IgE. Moreover, a combination of monoclonal antibodies to glycoproteins IIb and IIIa inhibited the binding of the IgE protein to normal platelets but did not affect the binding of aggregated IgG. Thus, the binding of IgE to human platelets appeared to require the presence of the glycoprotein IIb-IIIa complex. Binding of monomeric IgE to platelets, by itself, did not initiate either platelet aggregation or release of 14C-serotonin. However, both aggregation and secretion of serotonin followed the addition of anti-IgE to IgE-sensitized platelets. These studies indicate that human platelets can bind an IgE myeloma protein in vitro and that cross-linking of surface-bound IgE with anti-IgE initiates aggregation and secretion. If platelets have a similar capacity to bind normal IgE in vivo, it is possible that platelets may participate directly in several atopic or inflammatory disorders in man mediated by this class of antibody.

This content is only available via PDF.
You do not currently have access to this content.