We have previously shown that both bradykinin and lysylbradykinin are generated in nasal secretions upon nasal challenge of allergic individuals with appropriate allergen and have suggested that these potent pro-inflammatory peptides may contribute to the pathogenesis of the allergic response. In this study we used a variety of synthetic substrates together with both thin layer and high performance liquid chromatography systems to examine the metabolism of these peptides in nasal secretions obtained by lavage. We now demonstrate that in addition to low levels of angiotensin-converting enzyme, nasal lavages contain an aminopeptidase activity that converts lysylbradykinin to bradykinin, and a carboxypeptidase that removes the C-terminal arginine from bradykinin and lysylbradykinin. The levels of all these activities are significantly increased after allergen challenge of allergic, but not nonallergic, individuals. The aminopeptidase and carboxypeptidase activities present in post-challenge lavages from allergic individuals convert lysylbradykinin to intermediate products (bradykinin and des (Arg10) lysylbradykinin) and eventually to des (Arg9) bradykinin. The nasal carboxypeptidase was activated 475% by 0.1 mM CoCl2 and was inhibited by the carboxypeptidase N inhibitor, MERGETPA (D-L-mercaptomethyl-3-guanidino-ethylthiopropanoic acid) (IC50 = 10 microM). The aminopeptidase activity was not affected by MERGETPA but was potently inhibited by amastatin and bestatin (IC50 = 0.05 microM and 3.0 microM, respectively). The activity of the aminopeptidase against its synthetic substrate was also inhibited by lysylbradykinin (IC50 = 50 microM). Both the carboxypeptidase and aminopeptidase activities had neutral pH optima and were inhibited by o-phenanthroline, but were unaffected by inhibitors of neutral endopeptidases (phosphoramidon) or angiotensin-converting enzyme (Captopril). The Km of bradykinin for the nasal carboxypeptidase was 139 +/- 14 microM (n = 3). We conclude that during the allergic response, nasal secretions contain aminopeptidase and carboxypeptidase activities that convert lysylbradykinin and bradykinin (B2 agonists) to des (Arg9) bradykinin (a B1 agonist). Because the nature of the kinin receptors in the nasal mucosa are currently unknown, it remains to be determined whether this metabolism results in the termination of biologic activity or the production of a biologically active moiety.

This content is only available via PDF.
You do not currently have access to this content.