T suppressor cell differentiation factor (TsDF) induces the differentiation of alloantigen-primed suppressor T cells (MLR-Ts) to expression of their effector function, i.e., to active TsF production. The initial activation stimulus to Ts is provided by alloantigen binding; after this binding, Ts are functionally responsive only for a period of hours to the additional stimulus provided by TsDF. The present studies addressed the possibility that MLR-Ts responsiveness to TsDF reflects the induced and transient display of TsDF-binding receptors. TsDF receptor expression was investigated by determining the capacity of TsDF-responsive MLR-Ts to adsorb TsDF activity and to respond to that TsDF pulse by TsF production. Primed Ts populations that were alloantigen restimulated for 8 hr adsorbed TsDF in a cell dose-dependent fashion and produced TsF in response to that adsorption, whereas alloantigen-stimulated naive cells or primed but nonrestimulated cells neither responded to nor bound TsDF. Primed and restimulated L3T4-Ly-2+ but not L3T4+-Ly-2--enriched T cells bound TsDF. TsDF adsorption was saturable and time and temperature dependent. Glutaraldehyde fixation did not prevent TsDF adsorption by restimulated MLR-Ts, whereas pronase treatment abolished their TsDF-binding capacity. Kinetic analyses demonstrated that the capacity to bind TsDF developed rapidly after alloantigen reexposure, with maximal binding within 8 hr, followed by rapid decay with loss of TsDF binding by 36 hr. The kinetics of TsDF-induced TsF production correlated precisely with those of TsDF binding. These observations provide strong evidence that TsDF affects primed alloantigen-reactive Ts by interaction with antigen-induced and transiently expressed cell surface receptors. TsDF-receptor binding is then the stimulus for expression of Ts effector function.

This content is only available via PDF.
You do not currently have access to this content.