The T cell differentiation molecule CD8 is thought to play an important role in class I major histocompatibility complex-restricted T cell activities but the precise function of this molecule is unknown. To explore this question, we have studied several CD3+, CD8+ class I alloantigen-specific cytotoxic T lymphocyte (CTL) lines and clones. The ability of these CTL to proliferate as well as to lyse specific targets was inhibited by either anti-CD3 or anti-CD8 monoclonal antibodies. Exposure of CTL to relevant but not irrelevant target cells induced the rapid (less than 1 hr) disappearance of approximately 20 to 30% of CD3 and CD8 molecules from the cell surface. The modulation of these molecules became maximal at 6 to 12 hr and recovered thereafter in parallel. Treatment of CTL with anti-CD8 prevented alloantigen-induced modulation of CD3, and treatment with anti-CD3 blocked modulation of CD8. Incubation of CTL with the combination of anti-CD3 and goat anti-mouse Ig also resulted in modulation of CD8. In contrast, the expression of other CTL surface antigens, such as CD2 (Leu-5, T11) and HLA-DR, was not reduced by any of these manipulations. These results suggest that CD8 molecules are associated with the CD3/antigen receptor complex on the surface of CTL, and may play a direct role in antigen-induced modulation and cross-linking of the T cell receptor.

This content is only available via PDF.
You do not currently have access to this content.