Highly purified human T cells from peripheral blood fail to produce interferon (IFN)-gamma in the absence of accessory cells. The ability of T cells to produce IFN-gamma upon stimulation with phytohemagglutinin (PHA) or concanavalin A could be restored by the addition of cultured allogeneic human foreskin fibroblasts. Addition of antibodies specific for HLA-DR, DQ, and DP antigens failed to block this accessory function of the fibroblasts. In contrast, antibodies to HLA-DR and DQ antigens inhibited the accessory cell activity of autologous monocytes. Allogeneic fibroblasts failed to exert accessory activity when exogenous interleukin 2 (IL-2) was used as the stimulus for IFN-gamma production. In contrast, autologous monocytes were active as accessory cells for IL-2-stimulated T cells. Addition of recombinant human interleukin 1 alpha (IL-1 alpha) or IL-1 beta to PHA-stimulated T cells co-cultured with fibroblasts stimulated IFN-gamma production. In contrast, preincubation of fibroblasts with IL-1 alpha or IL-1 beta caused a dose-dependent suppression of the ability of fibroblasts to augment PHA- and concanavalin A-induced IFN-gamma production by T cells. Preincubation of fibroblasts with recombinant human tumor necrosis factor (TNF) also reduced their accessory activity. Incubation of fibroblasts with IFN-gamma produced some reduction in their accessory activity and the inhibitory effect of TNF was further enhanced in the presence of IFN-gamma. A 4- to 10-hr incubation of fibroblasts with IL-1 or TNF was sufficient to produce a maximal suppression of accessory activity. Fixation of fibroblasts with formaldehyde decreased their accessory activity, but fixation did not abolish the suppression of accessory function induced by earlier incubation with IL-1. Supernatants of IL-1-treated fibroblast cultures had less suppressive activity than the IL-1-treated fibroblasts per se, and no suppressive activity at all was detected in the supernatants of TNF-treated fibroblasts. Enhanced prostaglandin synthesis may play a role in the IL-1- and TNF-induced suppression of accessory cell function, but other factors are likely to be involved. Our results show that fibroblasts can have a marked effect on T cell function and that IL-1 and TNF can exert immunoregulatory activities indirectly by altering the interactions of fibroblasts with T cells.

This content is only available via PDF.
You do not currently have access to this content.