The processing and presentation of insulin by B hybridoma cells to insulin A loop-specific T cell hybridomas was investigated. We found that the activation of these T cells requires insulin to be processed in a manner that permits unfolding of the molecule and prevents extensive proteolysis. An analysis of insulin peptides formed by either enzymatic digestion in vitro or solid phase synthesis revealed that a conformational determinant comprised of residues A1-A14 disulfide-linked to B7-B15 is most immunogenic to these T cells. Reduction and/or proteolysis of this peptide markedly decreases its immunogenicity. The pork insulin A1-A14/B7-B15 peptide differs only at residue A4 from its mouse insulin homolog. Thus, Glu A4 forms part of the antigenic site recognized by a pork insulin/I-Ad-specific mouse T cell. This insulin peptide can be induced to assume an alpha-helical configuration in a hydrophobic environment. In addition, virtually all of the residues of this peptide are identical with those predicted to be situated in amphipathic regions of the native insulin molecule. N-Ethylmaleimide and bacitracin, which inhibit the activity of two cytosolic enzymes that cleave insulin, enhance the antigen presentation of insulin. This suggests that these enzymes may participate in the nonlysosomal antigen processing of insulin by a B lymphocyte. A comparison of the relative avidity of several T cell hybridomas, which have the same apparent specificity for this insulin peptide, showed that an increase in their avidity was associated with a degeneracy in their fine specificity. Our data demonstrate that the efficiency of processing and presentation of a given antigenic determinant is related to the conformation of the determinant and the specificity and avidity of the T cell.

This content is only available via PDF.
You do not currently have access to this content.