In order to identify the V region genes encoding systemic lupus erythematosus (SLE)-derived anti-DNA autoantibodies, we have determined the nucleotide sequence of heavy chain mRNA from several DNA-binding immunoglobulins secreted by human hybridomas. We used the technique of cDNA primer extension for determining sequences of the VH, D, and JH gene segments of anti-DNA autoantibodies from three different primary hybridoma growths from an SLE patient and one hybridoma from a leprosy patient. Immunoglobulins from two of the SLE hybridomas expressed the same idiotype, Id-16/6, which is also expressed on immunoglobulins in sera of patients with active SLE. Their mRNA sequences showed complete homology to each other in the V, D, and J genes and more than 99% homology to the VH26 germ-line gene sequence, a member of the human VHIII gene family. The VH mRNA sequence of the third SLE hybridoma, 21/28, which was idiotypically unrelated to the other two, was 93% homologous to a different VH germ-line gene sequence, HA2, a member of the human VHI gene family. The fourth anti-DNA-producing hybridoma, 8E10, was derived from a leprosy patient of different ethnic origin than the SLE patient. It was idiotypically related to 21/28 and expressed a VH segment gene identical to that of 21/28. Hybridomas 21/28 and 8E10 shared sequence homology with the VH26 anti-DNA antibodies in the first complementarity-determining region. In addition, 21/28 shared sequence homology with the Id-16/6+ group in the region encoded by the D and J gene segments. Our findings indicate that some SLE autoantibodies are encoded by unmodified or scarcely modified VH germ-line genes that are conserved in the human population and identify two distinct VH germ-line genes that can encode segments of anti-DNA immunoglobulins.

This content is only available via PDF.
You do not currently have access to this content.