Conditions necessary for in vitro chain recombination of high affinity (10(9) to 10(12) M-1) antidigoxin monoclonal antibodies resulted in decreased affinity for both intact "native" and chain recombinant molecules. Chain recombination by somatic cell fusion was used instead to study the effects on antigen specificity and idiotypy of recombinants in which an homologous light (L) chain substituted for the parental L chain. The antidigoxin antibody 26-10 utilizes a VL sequence highly homologous to that of antibody 40-20, an antidigoxin antibody which uses a different VH gene than does 26-10 and lacks significant reactivity with an anti-26-10 idiotypic serum. The drug-marked antidigoxin cell line 26-10 (gamma 2a, kappa) and a drug-marked light chain producing variant of antidigoxin hybridoma 45-20 (lambda 1) which lacks both digoxin binding and idiotypy were fused. The fusion progeny (gamma 2a, kappa, lambda 1) which binds digoxin and is idiotype-positive, was selected for kappa loss (resulting in loss of digoxin and idiotype binding) and then fused with a heavy (H) chain loss variant of antidigoxin hybridoma 40-20 (kappa, digoxin nonbinding, idiotype negative). The resultant cell line CR-57 (gamma 2a, kappa, lambda) secretes antibodies which assemble the 26-10 H chain with both the 40-20 kappa-chain and the 45-20 lambda 1-chain. The affinity purified recombinant species consisting of 26-10 H chain and 40-20 kappa-chain expresses complete 26-10 idiotypic determinants. However, this recombinant antibody binds digoxin with decreased affinity and altered specificity relative to native 26-10. The binding specificity pattern nonetheless is most similar to the H chain donor. Amino acid and nucleotide sequence analyses of the respective light chains demonstrate six variable region differences between them, two of which are in complementarity-determining regions and the remainder in the framework. Hybridoma-hybridoma fusion provides an alternative to in vitro chain recombination for studying the contribution of chain combinational diversity to antibody diversity, antigen binding, and idiotypy.

This content is only available via PDF.
You do not currently have access to this content.