The aim of this study was to investigate the in vitro role of the complement membrane attack complex (MAC) in the injury induced by nephritogenic anti-brush border vesicle (Fx1A) antibodies on rat glomerular visceral epithelial cells (GEC). Both sheep and rabbit anti-rat brush border vesicle IgG-induced complement-dependent lysis of cultured GEC. Fab fragments of sheep anti-rat brush border vesicles and polyclonal or monoclonal gp330 IgG were devoid of lytic activity. Shedding of cell-surface antigens induced by sheep or rabbit anti-rat brush border vesicle IgG protected GEC from subsequent exposure to lytic antibodies and complement, an effect that was not obtained with Fab fragments. When GEC were incubated with sheep or rabbit anti-rat brush border vesicle IgG in capping conditions, the C3 component was co-redistributed with Heymann immune complexes; in contrast, the MAC remained diffusely bound to the cell surface, indicating that it was not associated with the antigen-antibody complexes. The MAC was demonstrated on the surface of GEC by immunofluorescence staining with anti-MAC neoantigen and by electron microscopy of negatively stained membranes showing focal clusters of 110 A MAC lesions. When GEC were treated with sheep IgG or rabbit IgG plus C6-deficient sera, the cells were not lysed and MAC was not demonstrable on the surface; however, lytic activity was restored when C6-deficient sera were reconstituted with purified C6. The results are consistent with the interpretation that injury induced by Heymann antibodies on GEC is MAC-dependent.

This content is only available via PDF.
You do not currently have access to this content.