Human recombinant granulocyte-macrophage CSF (GM-CSF) "primes" neutrophils for enhanced biologic responses to a number of secondary stimuli. Here, we examined the properties of neutrophil priming by GM-CSF and other growth factors such as human rTNF and granulocyte CSF. Although GM-CSF has a negligible direct effect on [3H]arachidonic acid release, it enhances or "primes" neutrophils for three- to fivefold increased release of [3H]arachidonic acid, induced by 1.0 microM A23187 and the chemotactants FMLP, platelet-activating factor, and leukotriene B4 (LTB4) (all 0.1 microM). The priming effects of GM-CSF were concentration- and time-dependent (maximum 100 pM, 1 h at 23 degrees C), and consistent with the determined dissociation constant of the human GM-CSF receptor. Indomethacin (10(-8) M), cycloheximide (100 micrograms/ml), and pertussis toxin (200 ng/ml, 2 h at 37 degrees C) had no effect on GM-CSF-, A23187, or platelet-activating factor-induced [3H]arachidonic acid release. The lipoxygenase inhibitor, nordihydroguaiaretic acid, however, totally abolished A23187-induced [3H]arachidonic acid release from both diluent- and GM-CSF-treated neutrophils. Consistent with this observation, we found that GM-CSF-pretreated neutrophils synthesize increased levels of LTB4 after stimulation with A23187 and chemotactic factors. GM-CSF enhances neutrophil arachidonic acid release and LTB4 synthesis, and thereby may amplify the inflammatory response to chemotactic factors and other physiologically relevant stimuli.

This content is only available via PDF.
You do not currently have access to this content.