We have analyzed the mechanisms controlling the accumulation of T lymphocytes in tumor tissues. Spleen cells, left or right popliteal lymph node cells, and tumor-infiltrating cells were obtained from tumor-inoculated rats and were cultured for 24 h. Culture supernatants were obtained and assessed for lymphocyte migration factor (LMF) activity with the use of a modified Boyden chamber. We found that tumor-infiltrating cells derived from T-9-sensitized rats produced LMF. Two waves of LMF production were observed. The first wave of LMF production was detected between 6 and 12 h (LMF-a) and the second wave of LMF production was detected between 4 and 6 days (LMF-4d and -6d) after tumor inoculation. The tumor-infiltrating cells consisted of heterogenous cell populations. We found that only tumor-infiltrating neutrophils of T-9-sensitized rats produced LMF-a. Five peaks of LMF (A through E) were detected upon fractionation of LMF-a using Mono Q anion exchange column chromatography. Peak D exhibited the strongest activity. The action of peak D was chemotactic, but not chemokinetic. The m.w. of peak D was 33,000 and 70,000. Only W3/25 (+) (helper/inducer) T cells were found to be sensitive to peak D. The production of LMF-a by purified tumor-infiltrating neutrophils in vitro is in agreement with the histologic observation that the infiltration of neutrophils precedes the appearance of W3/25 (+) T cells in tumor tissues of T-9-sensitized rats. It is thus likely that peak D of LMF-a is responsible for the infiltration of T lymphocytes into tumor tissues.

This content is only available via PDF.
You do not currently have access to this content.