We examined effects of human rTNF alpha on the synthesis of glycosaminoglycan and DNA in cultured rat costal chondrocytes. The effects of human recombinant IL-1 alpha and IL-1 beta were also given attention. rTNF alpha, as well as rIL-1 alpha and rIL-1 beta, decreased the incorporation of [35S]sulfate into glycosaminoglycan to about 10% of the levels in the control. The half-maximal doses of rTNF alpha, rIL-1 alpha or rIL-1 beta required for the suppression of glycosaminoglycan synthesis (by rTNF alpha, rIL-1 alpha, and rIL-1 beta) were 2 ng/ml, 30 ng/ml, or 5 ng/ml, respectively. rTNF alpha stimulated incorporation of [3H]thymidine in the chondrocytes in a dose- and time-dependent manner. DNA synthesis was increased to about threefold over the control cultures in the presence of 1 microgram/ml rTNF alpha for 72 hr. The stimulatory effect of rTNF alpha on DNA synthesis was observed in both subconfluent and confluent cultures, whereas rIL-1 alpha and rIL-1 beta had no stimulatory activity on DNA synthesis. The addition of rTNF alpha to the cultures of chondrocytes stimulated DNA synthesis, even in medium containing no fetal calf serum. The fetal calf serum acted synergistically with rTNF alpha in increasing DNA synthesis. We propose that both TNF and IL-1 may be involved in inflammatory diseases of cartilage, and that TNF alpha, but not IL-1, may have some physiologic growth factor function for chondrocytes.

This content is only available via PDF.
You do not currently have access to this content.