Treatment of Raji or Daudi cells with human serum under conditions which allow the alternative pathway of C activation results in their C3-opsonization and enhanced sensitivity to NK-mediated lysis. The effector lymphocytes have low buoyant density, carry CD16 and HNK1 markers as well as the CD11a-c/CD18 leukocytic cell adhesion molecules. One of these molecules, made up of CD11b-CD18 (alpha- and beta-chains), is also the receptor for iC3b. We studied the role of the cell adhesion molecules in the NK effect on targets with and without C3-fragments. We focused on the E/T interaction of opsonized cells in the presence of anti CD18 mAb. mAb directed to the CD11a molecule caused 0 to 30% inhibition of the lysis of both non-opsonized and opsonized cells whereas the mAb antibody directed to the CD11c molecule had no effect. Reagents reactive with the iC3b binding site of CD11b (alpha-chain of the CR3) molecule did not alter the lysis of non-opsonized targets whereas they abrogated the C3-mediated increment of the Nk effect on opsonized cells. Two mAb preparations, 60.3 and IB4, directed to the CD18 chain shared by the three cell adhesion molecules abrogated in a dose-dependent way the lysis of both non-opsonized and opsonized targets. The 60.3 mAb inhibited the iC3b binding site of CR3 (despite its localization on the alpha-chain) and in accordance it inhibited the binding of lymphocytes to the opsonized target also. The IB4 did not affect this site and in accordance it inhibited only partially the binding of effectors to the C3 fragment carrying Raji, nevertheless it inhibited their lysis. This result indicates that the iC3b-CR3 bridge is insufficient for triggering the lysis in absence of the contact through the adhesion molecules.

This content is only available via PDF.
You do not currently have access to this content.