Human monocytes can be triggered to antibody-dependent cell-mediated cytotoxicity (ADCC) by murine antibodies. In this study, a series of H chain isotype switch variant antibodies against glycophorin A on human RBC was used to study the influence of isotype on the induction of ADCC. Furthermore, it was studied whether the functional heterogeneity in responsiveness to IgG1 and IgG2b anti-CD3 antibodies, as found among different donors in T cell proliferation induction experiments, was reflected in ADCC. Whereas IgG2a induced ADCC to the same extent in monocytes from all donors, IgG1 showed a heterogeneous pattern, which corresponded to the heterogeneity in T cell proliferation studies. IgG1 anti-CD3 nonresponder monocytes could, however, be induced to ADCC by IgG1 antiglycophorin, although they needed a much higher antibody density on the target cell than did responder monocytes. IgG2b antiglycophorin at a high density induced ADCC in monocytes from all donors irrespective of responsiveness to IgG2b anti-CD3, whereas IgE and IgA antiglycophorin were barely effective in monocytes from all donors. By specific blocking with mAb, the FcR that were involved in ADCC directed by the various isotypes were characterized. ADCC by IgG2a was predominantly mediated by FcRI and could be specifically enhanced by culturing the monocytes with rIFN-gamma. ADCC by IgG1 was predominantly mediated through FcRII in both anti-CD3 responder and nonresponder monocytes. FcRII was also involved in ADCC by IgG2b, although other receptors seemed to contribute significantly to ADCC. When FcRII or FcRI were blocked, IgG1 and IgG2a could also functionally interact with FcRI and FcRII, respectively, provided that the target cells were sensitized to a high degree. These findings indicate that FcRI and both forms of FcRII can mediate cytotoxicity and that the specificity of human FcR for murine isotypes is relative.

This content is only available via PDF.
You do not currently have access to this content.