Th1 and Th2 clones specific for human gamma globulin (HGG) were compared and shown to differ in terms of the effects of tolerance induction on Ag-induced proliferation and helper activity. In developing a method to induce tolerance, splenic APC that had been pulsed with HGG and then fixed with 0.15% paraformaldehyde (HGG-FAPC) were used as a means to present Ag to the Th clones in the absence of costimulatory signals. Both Th1 and Th2 clones recognized HGG-FAPC as evidenced by their ability to proliferate to HGG-FAPC. Unlike Th2, Th1 proliferated to HGG-FAPC only in the presence of T cell-depleted allogeneic spleen cells as a source of accessory cell signals. The inability of Th1 cells to proliferate in the absence of costimulatory signals was due to Ag-specific inactivation: Th1 clones preincubated with HGG-FAPC were unable to proliferate when recultured with HGG and irradiated APC. In contrast to Th1 clones, Th2 clones showed no decrease in their Ag-induced proliferative capacity after exposure to any concentration of HGG-FAPC. However, when examined by using a second assay system, that of providing help for anti-HGG antibody production by primed B cells, Th2 preincubated with HGG-FAPC were markedly inhibited (up to 90%) in their ability to provide help. Preincubation with HGG-FAPC also inhibited the helper activity of the one Th1 clone that was found to induce a significant secondary antibody response. Taken together, the results suggest that exposure of Th1 to tolerogen in the form of HGG-pulsed fixed APC inactivates Th1 proliferative capacity, and possibly Th1 helper activity as well. Exposure of Th2 cells to a tolerogen suppresses the mechanism by which the Th2 cells provide Ag-induced B cell help, but does not inhibit the mechanism by which they proliferate to HGG. Furthermore, the results define a model that incorporates Ag processing as well as Ag presentation in the induction of tolerance in vitro.

This content is only available via PDF.
You do not currently have access to this content.