Voltage-gated excitability of purified human NK cells was studied by using flow cytometry and the voltage-sensitive dye, oxonol. Highly purified human NK cells (CD16 = 95 +/- 1%) from normal volunteers were prepared by using a negative panning technique. The Na(+)-channel agonists batrachotoxin (BTX) (1 to 4 microM) and veratridine (Ver) (100 to 400 microM) depolarized a population of highly purified human NK cells as determined by flow cytometry. BTX and Ver responses were concentration-, time-, temperature-, and Na(+)-dependent. The Na+ channel antagonist tetrodotoxin (1 microM) blocked BTX and Ver responses. Ver (100 microM) produced significant inhibition of cytotoxicity when purified NK cells were incubated with K562 tumor target cells in a 4-h 51Cr release cytotoxicity assay. The effect was blocked by tetrodotoxin. These results strongly suggest presence of functional Na+ channels in NK cells. Activation of voltage-dependent Na+ channels depolarizes cells and reduces their in vitro cytotoxic function.

This content is only available via PDF.
You do not currently have access to this content.