Activation of cutaneous sensory nerves induces vasodilatation and vascular permeability, i.e., neurogenic inflammation. We examined the histology and possible mast cell involvement in cutaneous neurogenic inflammation induced by electrical nerve stimulation (ENS). Three lines of evidence indicated that mast cells were not involved in rodent cutaneous neurogenic inflammation induced by electrical stimulation of the saphenous nerve. 1) Most mast cells (86.5% of all mast cells in the dorsal skin of the paw) were found in the deep dermis, whereas vessels developing increased vascular permeability after nerve stimulation (visualized with the supravital dye Monastral blue B, a macro-molecular tracer) were localized predominantly in the superficial dermis. By contrast, i.v. substance P, which also causes increased cutaneous vascular permeability, predominantly caused deeper vessels to leak. As analyzed by electron microscopy, the vessels that developed permeability in response to nerve stimulation, and were thereby stained with Monastral blue B, were found to be exclusively postcapillary venules. 2) Disodium cromoglycate (DSCG), a mast cell stabilizing compound, inhibited the cutaneous vascular permeability induced by intradermal injections of anti-IgE in a dose-dependent manner. By contrast, vascular permeability induced by ENS was not influenced by disodium cromoglycate treatment. 3) ENS and i.v. substance P both induced cutaneous vascular permeability in mast cell-deficient W/Wv mice, despite the fact that their skin contained only 4.7% of the mast cells present in their normal +/+ litter mates. The magnitude of ENS-induced vascular permeability responses in W/Wv mice were similar to control +/+ and BALB/c mice. This study supports our earlier observations suggesting that mast cell activation is not essential for the initial, vascular permeability phase of neurogenic inflammation in rodent skin.

This content is only available via PDF.
You do not currently have access to this content.