Influenza A virus infections are commonly associated with symptoms that suggest involvement of TNF-alpha. In this study, we exposed human monocytes, rat alveolar macrophages, and murine PU5-1.8 macrophages to influenza A virus, strain Puerto Rico 8. We observed a productive infection that was accompanied by TNF-alpha mRNA accumulation, TNF-alpha release and subsequent cell death. TNF-alpha production was dependent on exposure to live virus, in contrast to IFN release that was also induced by UV-inactivated virus. Most strikingly, low amounts of LPS (1 to 10 ng/ml) from Escherichia coli or Haemophilus influenzae were capable of strongly potentiating TNF-alpha production from virus-infected macrophages. The potentiating effect of LPS was neither due to increased survival of macrophages nor to altered virus multiplication, enhanced TNF-alpha gene expression, discharge of intracellular TNF-alpha stores, or shifts in the kinetics of TNF-alpha release. Thus, low amounts of LPS, which could easily be present in vivo, may serve as a potent trigger signal for TNF-alpha production from macrophages that have been primed by influenza A virus infection. These data suggest that the frequently observed serious complications of combined influenza A virus and bacterial infections may be partially due to a high TNF-alpha production.

This content is only available via PDF.
You do not currently have access to this content.