A new murine IgA mAb (JKT.M1), developed against Jurkat T cells chronically infected with HIV IIIB induces in vitro homotypic aggregation in several hemopoietic cell lines. The JKT.M1 Ag is expressed on a wide variety of cell types including human lymphocytes, monocytes, platelets, RBC, human umbilical vein endothelial cells, many T cell lines, myelomonocytic cell lines, and a primate kidney cell line. The JKT.M1 Ag shows differential expression on myelomonocytic cells; it is present on K562 and HL60 cell lines, which represent precursors of E and monocytes, respectively, but is not expressed on the surface of U937 and THP-1 cell lines, which appear to represent intermediate cell types of the monocytic cell lineage. However, the JKT.M1 Ag is expressed on mature peripheral blood monocytes and the MonoMac cell line. Immunoprecipitation from cell lysates (Jurkat, SupT1, PBMC, MonoMac) with the JKT.M1 mAb yields a 20-kDa Ag with few if any carbohydrate residues as determined by N-glycanase and neuraminidase treatments. The pI appears acidic by two-dimensional gel analysis, and the nonreduced form migrates more slowly than the reduced form when analyzed by SDS-PAGE suggesting the presence of intramolecular disulfide bridge(s). JKT.M1 mAb-induced cell adhesion is shown to be divalent cation- and temperature-dependent. The adhesion induced by JKT.M1 mAb is inhibited by 20 microM cytochalasin B and also by 2 mM 2-deoxyglucose plus 10 mM sodium azide suggesting that cytoskeletal changes and metabolic energy are required. Aggregation induced by JKT.M1 appears to be independent of CD43, CD44, and VLA4 (CD29/CD49d), mAb against which have also been shown to induce homotypic cell adhesion. Anti-CD18 mAb have been shown to inhibit homotypic aggregation in other studies but failed to do so in the present study. Thus JKT.M1-induced adhesion also appears to be independent of CD18, the beta-chain of leukocyte integrins. However, like mAb against LFA-1, immobilized JKT.M1 stimulates a T cell line to undergo dramatic morphologic changes which could be enhanced by the addition of phorbol ester. These data suggest that the novel 20-kDa molecule recognized by the JKT.M1 mAb may trigger cell adhesion through a previously undescribed mechanism.

This content is only available via PDF.
You do not currently have access to this content.