IL-10 markedly reduces nuclear factor (NF)-kappa B/Rel nuclear activity induced in PBMC by stimulation with the anti-CD3 mAb OKT3. The inhibition is exerted specifically on the NF-kappa B/Rel activation induced by mAb OKT3, and not that produced by PMA. As judged by supershifting the DNA-protein complexes with Abs recognizing specific components of the NF-kappa B/Rel protein family, the p50/p65 (Rel A) heterodimeric form of NF-kappa B is primarily affected. The maximal effect is observed at the IL-10 concentration of 20 U/ml. IL-10 inhibitory activity is exerted on T lymphocytes and is mediated by monocytes. Indeed, monocytes pretreated with IL-10 are able so inhibit NF-kappa B nuclear activity in purified T lymphocytes stimulated with OKT3. Soluble factors do not appear to be involved in the mechanism of inhibition. On the other hand, the up-regulation of CD80 Ag, found on monocytes obtained from PBMC incubated with OKT3, is not detected after addition of IL-10, and the anti-CD28 mAb CLB-CD28/1 restores the NF-kappa B/Rel nuclear activity in IL-10-inhibited lymphocytes. Therefore, the NF-kappa B/Rel inhibition might be ascribed to a lack of cooperation between accessory cells and T lymphocytes, resulting from down-regulation of a costimulatory molecule, such as CD80, produced by IL-10 on activated monocytes. Our results demonstrate that IL-10 can inhibit the induction of NF-kappa B/Rel nuclear activity in CD3-stimulated T lymphocytes. Since inappropriate activation of kappa B-driven genes has a physiopathologic role in a number of diseases, such as HIV infection, our findings support the possibility of using this cytokine to suppress an undesirable activation of these transcription factors.

This content is only available via PDF.
You do not currently have access to this content.