Adjuvants are often essential additions to vaccines that enhance the activation of innate immune cells, leading to more potent and protective T and B cell responses. Only a few vaccine adjuvants are currently used in approved vaccine formulations in the United States. Combinations of one or more adjuvants have the potential to increase the efficacy of existing and next-generation vaccines. In this study, we investigated how the nontoxic double mutant Escherichia coli heat-labile toxin R192G/L211A (dmLT), when combined with the TLR4 agonist monophosphoryl lipid A (MPL-A), impacted innate and adaptive immune responses to vaccination in mice. We found that the combination of dmLT and MPL-A induced an expansion of Ag-specific, multifaceted Th1/2/17 CD4 T cells higher than that explained by adding responses to either adjuvant alone. Furthermore, we observed more robust activation of primary mouse bone marrow–derived dendritic cells in the combination adjuvant–treated group via engagement of the canonical NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome complex. This was marked by a multiplicative increase in the secretion of active IL-1β that was independent of classical gasdermin D–mediated pyroptosis. Moreover, the combination adjuvant increased the production of the secondary messengers cAMP and PGE2 in dendritic cells. These results demonstrate how certain adjuvant combinations could be used to potentiate better vaccine responses to combat a variety of pathogens.

You do not currently have access to this content.