Abstract
Chronic destruction of insulin-producing pancreatic β cells by T cells results in autoimmune diabetes. Similar to other chronic T cell–mediated pathologies, a role for T cell exhaustion has been identified in diabetes in humans and NOD mice. The development and differentiation of exhausted T cells depends on exposure to Ag. In this study, we manipulated β cell Ag presentation to target exhausted autoreactive T cells by inhibiting IFN-γ–mediated MHC class I upregulation or by ectopically expressing the β cell Ag IGRP under the MHC class II promotor in the NOD8.3 model. Islet PD-1+TIM3+CD8+ (terminally exhausted [TEX]) cells were primary producers of islet granzyme B and CD107a, suggestive of cells that have entered the exhaustion program yet maintained cytotoxic capacity. Loss of IFN-γ–mediated β cell MHC class I upregulation correlated with a significant reduction in islet TEX cells and diabetes protection in NOD8.3 mice. In NOD.TII/8.3 mice with IGRP expression induced in APCs, IGRP-reactive T cells remained exposed to high levels of IGRP in the islets and periphery. Consequently, functionally exhausted TEX cells, with reduced granzyme B expression, were significantly increased in these mice and this correlated with diabetes protection. These results indicate that intermediate Ag exposure in wild-type NOD8.3 islets allows T cells to enter the exhaustion program without becoming functionally exhausted. Moreover, Ag exposure can be manipulated to target this key cytotoxic population either by limiting the generation of cytotoxic TIM3+ cells or by driving their functional exhaustion, with both resulting in diabetes protection.