Spleen cells from mice injected with 2 to 50 µg bacterial lipopolysaccharide (LPS) have a reduced capacity to make an antibody response in vitro to trinitrophenylated sheep erythrocytes (TNP-SRBC) when tested 1 to 7 days later. Recovery is gradual, and these cells are fully functional 2 weeks after in vivo LPS treatment. Unresponsiveness resides in the nonadherent splenic cell populations, and can be shown to have a suppressive cell component, which is irradiation sensitive and has some characteristics of a thymus-derived lymphocyte (T cell). In addition, neither bone marrow-derived lymphocytes (B cells) nor T cells in the spleens of LPS-treated mice are functionally normal in their abilities to cooperate during an antibody response in vitro. LPS-B cells cooperated poorly with nylon wool-enriched T cells from normal mice but cooperated well with irradiated carrier-primed T cells or nylon wool-purified splenic T cells from carrier-primed mice. LPS-T cells have a reduced capacity to interact with normal B cells and appear to contain a suppressor cell component. These results indicate that the effects of exposure of immunocompetent cells to LPS are multifocal and can include suppression as well as stimulation of antibody formation.

1

This work was supported by United States Public Health Service Grant CA20078.

This content is only available via PDF.