Preparations containing alpha/beta-interferon produced by L-929 cells were found to inhibit the capacity of bloodstream forms of Trypanosoma cruzi to associate with and infect mouse peritoneal macrophages or rat heart myoblasts. Marked reductions in the number of parasites per cell as well as in the percentage of cells associated with the trypanosomes were systematically observed in cultures of these cells that contained interferon. The inhibitory effect was abrogated in the presence of specific antibodies against alpha/beta-interferon, and purified beta-interferon induced a similar inhibitory effect, indicating that the active principle in the preparation was indeed interferon. Pretreatment of the parasites with alpha/beta-interferon reduced their infectivity for untreated host cells, whereas pretreatment of either type of host cell had no consequence on the interaction. The effect of interferon on the trypanosomes was reversible; the extent of the inhibitory effect was significantly reduced after 20 min, and was undetectable after 60 min when macrophages were used as host cells. Longer periods of time were required for the inhibitory effect to begin to subside (60 min) and to become undetectable or insignificant (120 min) when rat heart myoblasts were used. The results of additional studies performed with purified preparations of alpha- or beta-interferon revealed that only the latter was inhibitory of cell-parasite association. Because interferon is known to be produced shortly after T. cruzi infection and its administration has been shown to have a marked protective effect against this infection, our results suggest that the latter may involve inhibition of cell infection by interferon.

This content is only available via PDF.