We assessed the effects of several leukotrienes and of f-Met-Leu-Phe on oxygen consumption in neutrophils and on the initial burst of chemiluminescence (CL) in both neutrophils and eosinophils. It was found that f-Met-Leu-Phe initiated 2.6 times higher oxygen consumption in neutrophils than did leukotriene B4 (LTB4). f-Met-Leu-Phe also stimulated five to 10 times more CL from both types of granulocytes than LTB4, which was at least five times more potent than its omega-hydroxylated metabolite, 20-OH-LTB4, whereas the corresponding 20-COOH derivative was effective only in eosinophils. The double dioxygenation product 5(S), 12(S)- DHETE caused no CL. Neutrophils from patients with chronic granulomatous disease did not respond with CL to any of the agents. The peak of CL occurred 50 to 60 sec after the addition of fMLP, whereas the LTB4-associated peak occurred after 5 to 6 sec and then rapidly subsided. The treatment of cells with sodium azide to inhibit the myeloperoxidase system did not change the kinetics or the rapid decline of the LTB4-induced CL. The CL response to LTB4 could be inhibited to 85% by 0.5 microgram/ml of superoxide dismutase, to 72% by 200 mg/ml of catalase, and to 50% by 80 microM of mannitol. The corresponding figures for f-Met-Leu-Phe-induced CL were 80, 58, and 16%, suggesting that, although a substantial part of the CL appears to be due to superoxide ion production, other oxygen radicals are involved in luminol-enhanced CL production. Thus, in contrast to some previous reports that leukotrienes do not stimulate an oxidative metabolic response in granulocytes despite their potent activity as chemotactic factors, our studies show that leukotrienes are definite inducers of granulocyte oxidative metabolism.

This content is only available via PDF.