Peripheral blood mononuclear cells from a patient with acute myeloid leukemia (AML) and spleen cells from a patient with chronic myeloid leukemia (CML) were fused with HAT-sensitive human B lymphoma cells (RH-L4) in attempts to generate human monoclonal antibodies (Mab) against antigens with high specificity for myeloid leukemia cells. Forty-seven of 246 hybridomas secreted Ig that bound to AML cell surface constituents, as determined by FACS analysis of viable cells that were FITC-stained with the human Mab as the first-step reagent and FITC-conjugated rabbit anti-human Ig as second-step. Two of the 47 human Mab (one from each patient and designated AML-19 and CML-20, respectively) bound to both autologous and allogeneic myeloid leukemia cells. No significant binding was observed to cell surface constituents on human bone marrow cells, granulocytes, lymphocytes, erythrocytes, thymocytes, monocytes, lymphoblastic leukemia cells, fibroblasts, malignant B and T lymphocytic cell lines, and murine bone marrow cells. Both human Mab were IgG and were cytotoxic to myeloid leukemia cells in the presence of complement. About 70% of peripheral blood cell samples from 46 AML patients contained AML-19- and CML-20-positive cells, but the reactivity pattern had no correlation to the morphologic FAB classification of the samples. The promyelocytic HL60 cell line and the K562 cell line reacted with the two antibodies. Dot blot analysis of binding of AML-19 and CML-20 to cellular extracts immobilized on nitrocellulose paper showed that both human Mab in this assay also reacted with normal bone marrow cells. This was supported by microscopic immunofluorescence because both human Mab stained intracytoplasmatic structures in normal bone marrow cells, but both intracytoplasmatic and cell surface components stained in myeloid leukemia cells. Moreover, immunoblotting demonstrated that both human Mab in leukemia cells reacted with two cellular proteins with Mr approximately 14,500 and 18,000, and in normal bone marrow cells with a molecule with Mr approximately 20,000. Immunoprecipitation of cell membrane molecules with both the AML-19 and CML-20 antibody precipitated from leukemic cells only the molecule with Mr approximately 18,000 and no components from normal bone marrow cells. It is concluded that myeloid leukemogenesis may result in generation of cell surface expression of either new or abnormally processed molecules that are immunogenic in the autochthonous host. These molecules may also be useful as markers in diagnosis of myeloid leukemia.

This content is only available via PDF.