Essential fatty acid (EFA) deficiency exerts an anti-inflammatory effect in several models of inflammation. In an effort to understand underlying mechanisms, the effect of EFA deficiency on the generation of eicosanoids and the elicitation of leukocytes in a model of acute inflammation was examined. Acute inflammation was induced by the i.p. injection of zymosan in mice. The injection of zymosan in normal mice was followed by a short burst of eicosanoid synthesis lasting 2 hr. Leukotriene (LT)B4, LTC4, LTD4, and LTE4, thromboxane B2, and 6-keto-prostaglandin F1 alpha were detected using high pressure liquid chromatography and specific radioimmunoassays. This initial phase of eicosanoid production was followed by a more prolonged infiltration of leukocytes (predominantly polymorphonuclear neutrophils (PMN)) lasting 48 hr with little eicosanoid synthesis. When challenged with zymosan, EFA-deficient mice exhibited a marked decrease in the production of eicosanoids during the early phase. No LTB could be detected at all. The number of resident peritoneal macrophages in EFA-deficient mice was also substantially decreased, and the influx of PMN during the inflammatory response was markedly diminished. In order to establish that the generation of eicosanoids during the early phase of this model of acute inflammation played a causal role in the later infiltration of PMN, the effect of the mixed lipoxygenase/cyclooxygenase inhibitor, BW755C, on LTB formation and PMN influx in this model of inflammation was assessed in control animals. BW755C completely blocked LTB synthesis and inhibited the subsequent influx of PMN. In conclusion, EFA deficiency inhibits eicosanoid generation, depresses levels of resident macrophages, and markedly diminishes the influx of PMN in the acute inflammatory response. The decrease in PMN influx appears to result from the inhibition of the antecedent generation of LTB.

This content is only available via PDF.