Highly purified peripheral blood monocytes were cultured in the presence of rIL-4. Major changes in the morphology of the monocytes were observed. After day 5 of culturing the cells acquired a macrophage-like appearance, with increased cell size and extensive processes, suggesting that IL-4 may induce monocyte-macrophage differentiation. This notion is supported by the observed increased expression of MHC class II Ag, which is thought to be associated with monocyte differentiation. Exposure of monocytes to IL-4 resulted in a dose-dependent increase of the expression of MHC class II Ag, which became apparent after only 20 h of incubation. Maximal expression was obtained after incubation for 6 days, and persisted throughout the whole culture period. Similarly, IL-4 increased the expression of R for C3bi and p150.95 Ag, two members of the leukocyte function-associated Ag 1 family, whereas the expression of the third member, leukocyte function-associated Ag 1, remained unchanged during culture. Furthermore, it was shown that IL-4 inhibited the secretion of cytostatic and chemotactic compounds. Supernatants of monocytes cultured with IL-4 were, in contrast to control cultures, much less effective in inhibiting the growth of A375 melanoma cells. In addition, these supernatants failed to direct the migration of freshly isolated monocytes in a chemotaxis assay. Further analysis revealed that these supernatants exhibited reduced IL-1 activity, as measured in a mouse thymocyte proliferation assay, which might explain the low cytostatic and chemotactic activity. Taken together these results show that IL-4 modulates monocyte phenotype and function and may induce monocyte-macrophage differentiation in vitro.

This content is only available via PDF.