We have correlated the intensity of expression of CD45 Ag (T200 common leukocyte Ag) with mAb reactive with various lineages of hemopoietic cells in normal human bone marrow by using two-color immunofluorescence on a flow cytometer. Mature T lymphocytes (CD3+) and NK cells (CD16+ or CD11b+) expressed CD45 at the highest intensity. B lymphoid cells (CD19+) had three distinct levels of CD45 Ag expression. The bright CD45(3+) cells were mature B cells (CD19+, CD20+), whereas the less intense CD45(2+) cells were less mature B lymphoid cells (CD19+, CD10+). The dim CD45+ cells were very early, B lymphoid precursor cells (CD19+, CD10(2+), CD34+). The intensity of CD45 expression increased as cells matured in the monocytic lineage (CD14+, CD11b+). Among marrow granulocytic cells, CD45 intensity did not change on cells during maturation. Within the erythroid lineage, the most immature cells were CD45+ dim, and CD45 expression decreased during erythroid maturation to become undetectable on mature E. Hemopoietic progenitor cells (CD34+) expressed low levels of CD45 Ag. Expression of CD45R on marrow cells also showed intensity differences on different lineages. All NK cells (CD16+) were positive for CD45R, whereas only about one-half of the T lymphocytes (CD3+) were positive for CD45R. Almost all the cells in the erythroid and myelomonocytic lineages were CD45R-. Quantitative differences in expression of CD45R were observed on marrow B lymphoid cells which were correlated with the expression of CD45. The results show that quantitative changes in CD45 Ag expression accompany the differentiation and maturation of cells in the bone marrow. Comparisons with CD45R showed that this Ag was not always correlated with CD45. Since these Ag are the products of the same gene, these data indicate that the regulation of expression of the T200 molecules during normal hemopoietic development must be both quantitative and qualitative.

This content is only available via PDF.