The (NZB x SWR)F1 hybrid mice (SNF1) uniformly develop lethal glomerulonephritis in marked contrast to their parents and produce nephritogenic autoantibodies that consist of highly cationic, IgG anti-DNA antibodies that share distinct cross-reactive idiotypes called IdLNF1 (idiotypes-lupus nephritis-SNF1). Herein we found that spleen cells of SNF1 mice at the late prenephritic stage, contained CD4+/CD8- and CD4-/CD8- Th that not only induced their B cells in vitro to produce highly cationic IgG autoantibodies to DNA but IdLNF1-positive IgG antibodies as well. The double-negative Th were unexpected in the SNF1 mice because they lack the lpr (lymphoproliferation) gene. We also derived IL-2-dependent CD4+/CD8- as well as CD4-/CD8- T cell lines from nephritic SNF1 mice, that could simultaneously induce IdLNF1-positive and cationic anti-DNA antibodies of IgG class. The CD4+ T cell lines consisted of "autoreactive" T cells, but not all of the lines were equal in autoantibody-inducing capability. Remarkably, the T cell lines that preferentially responded to F1-hybrid-MHC determinants, had a significantly greater ability to augment the production of pathogenic autoantibodies. The SNF1-Th could also augment autoantibody production by the NZB or SWR parent's B cells; however, IdLNF1-positive and cationic anti-DNA autoantibodies of IgG class were not induced, suggesting that the SNF1 mice possess a select population of inducible (susceptible) B cells that are committed to produce nephritogenic autoantibodies and the parental strains are deficient in such B cells. Thus, production of nephritogenic autoantibodies with IdLNF1 markers in the SNF1 mice could result from an interaction between a select population of B cells and CD4+ Th that preferentially recognize unique F1-hybrid-MHC determinants, as well as double-negative auxiliary Th.

This content is only available via PDF.