TNF is a pleiotropic cytokine that mediates diverse cellular responses, including cytotoxicity, cytostasis, proliferation, differentiation, and the expression of specific genes. Many of these processes require the activity of DNA topoisomerases I and II. We have investigated the interactions of TNF with inhibitors of both topoisomerases in 16-h assays using the murine L929 and human ME-180 cell lines, which undergo a cytotoxic TNF response. Camptothecin, a specific inhibitor of topoisomerase I, enhanced TNF cytotoxicity 150-fold against both cell lines. The topoisomerase II inhibitors VM-26 and VP-16, which stabilize covalent DNA-topoisomerase intermediates, greatly enhance TNF cytotoxicity against both cell lines. The most effective, VM-26, can lower the TNF LD50 to femtomolar levels. In contrast, the topoisomerase II inhibitors novobiocin and coumermycin, which bind to the enzyme ATPase site, protect L929 cells from TNF cytotoxicity but enhance TNF cytotoxicity in ME-180 cells. The large changes in TNF sensitivity induced by drug concentrations that by themselves show no effect, and the opposing synergistic effects of inhibitors with different inhibitory mechanisms (in L929 cells), suggest the active involvement of topoisomerases in TNF-mediated cytotoxicity. The correlation of cytotoxic synergy with the stabilization of DNA strand breaks indicates that DNA damage may play a significant role in TNF-mediated cytotoxicity.

This content is only available via PDF.