The CD45 molecule was analyzed from murine intestinal intraepithelial lymphocytes (IEL). Immunofluorescent staining of CD8+ IEL revealed varying degrees of reactivity with mAb specific for CD45-restricted determinants, some which are typically expressed only by B cells. Immunoprecipitation of CD45 molecules from IEL yielded an array of proteins with apparent (m.w.) ranging from 180,000 to 260,000. The m.w. 260,000 form was restricted to IEL, was distinct from the B220 molecule, and was the only CD45 isoform that expressed the CD45-associated carbohydrate differentiation Ag CT1. Moreover, the CT1 determinant was present on cells of the Thy-1- but not the Thy-1+ IEL subset. Sequential immunoprecipitation studies indicated that expression of the m.w. 260,000 protein was not restricted to CT1+ cells. The protein composition of the m.w. 260,000 CD45 isoform was examined by using the polymerase chain reaction for analysis of CD45 variable exon usage. In contrast to B cells in which the major CD45 mRNA contained all three variable exons (exons 4, 5, and 6), IEL CD45 mRNA contained significant amounts of two-exon, single exon, and zero variable exon forms. Restriction enzyme analysis identified the single exon form as exon 5 and the two-exon form as a mixture of exons 4 and 5 and exons 5 and 6. Metabolic labeling of CD45 in pulse-chase experiments suggested that the generation of this high m.w. protein was caused by post-translational modifications, perhaps glycosylation. Overall, the results indicated that the high m.w. form of CD45 and the addition of the CT1 determinant were generated via IEL-specific post-translational modifications and not by novel alternate exon usage.

This content is only available via PDF.