Nine groove-type mAb to alpha(1----6)dextran were cloned and sequenced. Together with previous reports from this laboratory, the VH and VL of 34 mAb have been sequenced, in which 10 VH19.1.2 and 11 VH9.14.7 combined with the V kappa-Ox1 gene to form two major families of anti-alpha(1----6)dextrans. The same D minigene (DFL16) was used by all VH19.1.2 and VH9.14.7 mAb; however, the patterns of JH and J kappa usage are quite different. VH19.1.2 mAb used only JH3 and J kappa 2, whereas VH9.14.7 mAb used three JH (JH1, JH2, and JH3) and all four active J kappa (J kappa 1, J kappa 2, J kappa 4, and J kappa 5). Relative uniformity in the lengths of VH CDR3 and the junctional sequences is seen in both families. Some mAb from different mouse strains share common structural features. The differences in idiotypic specificities and in the amino acid sequences suggest that VH19.1.2 and VH9.14.7 may differ in the conformation of CDR1 and CDR2. Combining with V kappa-Ox1 gene to generate groove-type combining sites to the single site-filling epitope of alpha(1----6)dextran, the two VH chains may require certain conformations of CDR3. Whether such conformational requirements influence the choice of J minigenes, the selection of the length of VH CDR3 and the sequences at junctions, are discussed.

This content is only available via PDF.