The HLA class II genes and haplotypes have evolved over a long period of evolutionary time by mechanisms such as gene conversion, reciprocal recombination and point mutation. The extent of the diversity generated is most clearly evident in an analysis of the HLA class II alleles present within DRw13 haplotypes. This study uses cDNA sequencing to examine the first domains of DRB1, DRB3, DQA1, and DQB1 alleles from several American black individuals expressing seven different DRw13 haplotypes, five with undefined HLA-D specificities (i.e., not Dw18 or Dw19). Two new DRw13 alleles described in this study are the first examples of convergent evolution of DR alleles in which gene conversion has apparently combined segments of DRB1 alleles encoding DRw11 and DRw8 to generate two new DRB1 alleles, DRB1*1303 and DRB1*1304, that encode molecules bearing serologic determinants of a third allele, DRw13. These new DRw13 alleles are found embedded in haplotypes of DRw11 origin distinct from haplotypes encoding previously identified DRw13 alleles, DRB1*1301 and DRB1*1302. These data suggest that two evolutionary pathways may have given rise to two subgroups of alleles encoding molecules that share DRw13 serologic determinants yet which possess different structural and, likely, functional motifs. Reciprocal gene recombination events resulting in different DR, DRw52 and DQ allele combinations also appear to have played a crucial role in augmenting the level of diversity found in DRw13 haplotypes. Recombination has resulted in the association of one of the new DRw13 alleles with a DQw2 allele normally found associated with DR7 and the association of the DRw52c-associated DRw13 allele (DRB1*1302) with three different DQw1 alleles. The seven DRw13 haplotypes that have resulted from the effect of recombination on haplotypes formed by the two pathways of DRw13 allelic diversification have resulted in different repertoires of class II molecules and, most likely, different immune response profiles in individuals with these haplotypes.

This content is only available via PDF.