Mast cell-committed progenitors are detected in the unique microenvironment of the mesenteric lymph node (MLN) of Nippostrongylus brasiliensis-infected mice but not in naive bone marrow. We have determined that MLN cells, after infection, produce high levels of IL-3, IL-4, and IgE, presumably in the form of immune complexes with antigens produced by the infecting helminth. After N. brasiliensis infection, peak production of these factors occurs several days before the peak appearance of mast cell-committed progenitors in the MLN. To determine if these factors play a role in mast cell commitment, we recreated these conditions, in vitro. Naive bone marrow cells were cultured with combinations of IL-3, IL-4, and IgE immune complexes, or on IgE-coated plates, and then assayed for acquisition of the ability to form mast cell colonies when supplemented with fibroblast-conditioned medium alone. IL-3 and IgE immune complexes, and, unexpectedly, IgE immune complexes alone were found to be capable of producing mast cell-committed progenitors, i.e., cells responsive to fibroblast-conditioned medium alone, from bone marrow, whereas IL-4 did not enhance production of mast cell-committed progenitors from bone marrow. Production of IFN-gamma peaked at the same time point as committed progenitor activity and may be responsible for down regulating the response.

This content is only available via PDF.