Transplantation of histoincompatible tissues leads to allograft rejection, which involves recognition of allogeneic MHC molecules by Ag-specific receptors expressed on T cells. The interaction of these molecules is highly specific yet poorly understood. We have investigated the relationship between TCR gene utilization and allo-MHC restriction patterns by using a one-way polymerase chain reaction to amplify the alpha- and beta-chain mRNA from a panel of 10 HLA-DR1-alloreactive T lymphocyte clones. Two previously unreported V alpha and five J alpha gene sequences were obtained. Although a few V alpha, V beta, and J alpha genes were utilized more than once, no correlation between TCR gene usage and DR1 alloreactivity was identified. At the sequence level, the presumed TCR alpha- and beta-chain CDR1 and CDR2 regions displayed limited diversity, whereas the CDR3 or junctional sequences were highly variable. Although most TCR probably interact with subtly different surface features of the DR1 alloantigen, we predict that TCR with similar CDR1 and CDR2 sequences would contact essentially identical regions of the DR1 molecule. The lack of sequence conservation in the junctional regions suggests that different endogenous peptides also may be recognized. Thus, alloreactive T cells may recognize not only allogeneic MHC molecules but perhaps also bound endogenous peptides.

This content is only available via PDF.