Natural killer T cells are an immunoregulatory population of lymphocytes that plays a critical role in controlling the adaptive immune system and contributes to the regulation of autoimmune responses. We have previously reported deficiencies in the numbers and function of NKT cells in the nonobese diabetic (NOD) mouse strain, a well-validated model of type 1 diabetes and systemic lupus erythematosus. In this study, we report the results of a genetic linkage analysis of the genes controlling NKT cell numbers in a first backcross (BC1) from C57BL/6 to NOD.Nkrp1b mice. The numbers of thymic NKT cells of 320 BC1 mice were determined by fluorescence-activated cell analysis using anti-TCR Ab and CD1/α-galactosylceramide tetramer. Tail DNA of 138 female BC1 mice was analyzed for PCR product length polymorphisms at 181 simple sequence repeats, providing greater than 90% coverage of the autosomal genome with an average marker separation of 8 cM. Two loci exhibiting significant linkage to NKT cell numbers were identified; the most significant (Nkt1) was on distal chromosome 1, in the same region as the NOD mouse lupus susceptibility gene Babs2/Bana3. The second most significant locus (Nkt2) mapped to the same region as Idd13, a NOD-derived diabetes susceptibility gene on chromosome 2.

An association between NKT cell deficiency and autoimmune disease has been identified (1, 2, 3, 4, 5, 6, 7, 8), and many studies support a causal relationship (3, 9, 10, 11, 12, 13, 14, 15). To date, the best studied example of this association are nonobese diabetic (NOD) 4 mice, a strain susceptible to several autoimmune diseases, including type 1 diabetes. Numbers of thymic NKT cells are unusually low in NOD mice (3, 4) and increasing them by adoptive transfer (9), transgenic expression of the NKT cell-associated TCR (Vα14Jα281) (10), or by stimulating them with the superantigen-like ligand α-galactosylceramide (α-GalCer) (12, 14) all inhibit the onset of diabetes. On this basis, Lord et al. (16) proposed that genetic control of NKT cells would map to one or more genomic regions implicated in conferring susceptibility to type 1 diabetes in NOD mice. To test this hypothesis, they examined the numbers of thymic αβTCR-positive, CD4 CD8 (double negative) cells in a series of congenic NOD lines carrying diabetes resistance loci derived from either the C57BL/6 or C57BL/10 mouse strains: Idd1 (the H2 region of chromosome 17), Idd3/Idd10/Idd17/Idd18 (distal chromosome 3), Idd5 (proximal chromosome 1), and Idd9/Idd11 (distal chromosome 4). None of these congenic regions significantly affected the numbers of thymic NKT cells as determined by this method. The authors concluded that either NKT cell number was under the control of other diabetes-associated loci, or else it was a complex genetic trait (16).

In this study, we have revisited this question by performing an autosome-wide scan of genes controlling the quantitative genetic trait, thymic NKT cell number.

NOD.Nkrp1b (17) and C57BL/6J mice were obtained from the Animal Resource Centre (Canning Vale, Australia). The NOD.Nkrp1b strain carries B6 alleles at the NKC on chromosome 6 (from D6mit105 to D6mit 135), permitting the use of the NK1.1 marker, if needed. Breeding of specific crosses was performed within the animal facility at the Centenary Institute (Sydney, Australia). Mice were housed in clean conditions, and sentinel mice were tested by serology at four-monthly intervals for the following pathogens: mouse hepatitis virus, rotavirus, ectomelia, mouse CMV, polyoma virus, murine adenovirus, lymphocytic choriomeningitis virus, mouse pneumonia virus, reovirus, Sendai virus, Theiler’s murine encephalitis virus, Bacillus piliformis, Mycoplasma pulmonis, Bordetella bronchiseptica, Corynebacterium kutscheri, Klebsiella species, Pasteurella multocide, Pasteurella pneumotropica, Pseudomonas aeruginosa, Staphylococcus aureus, Streptococcus pneumoniae, Citrobacter freundii, and Salmonella species. No sentinel mice tested positive for any of these pathogens.

Cell suspensions of thymus from 6-wk-old mice were prepared by gently grinding the organs between the frosted ends of glass microscope slides in PBS, and stained in PBS containing 5% FCS and 0.02% azide. Cells were analyzed by multiparameter flow cytometric analysis for forward scatter, side scatter, and binding to anti-αβTCR-FITC (clone H57-597; BD PharMingen, San Diego, CA) and PE-labeled, α-GalCer loaded, or unloaded (control), mCD1d tetramers (18). Analysis was performed on a FACSCalibur or FACStarPlus (BD Biosciences, San Jose, CA).

DNA of BC1 progeny was extracted from tails and subjected to an autosomal genome-wide scan using simple sequence repeats (SSR) chosen from the Whitehead Institute simple sequence length polymorphism library (Cambridge, MA) on the basis of expressing product length polymorphisms between the C57BL/6 and NOD/Lt strains (19). Additional markers were designed and characterized in house (see Results). Analysis of SSR polymorphism was performed, as previously described (20, 21).

Genotyping errors were identified manually as double recombinants or by the error-checking function of Mapmaker/EXP (22) and were reamplified. Recombination distances between markers were calculated from recombination frequencies using the Mapmaker/EXP program (22). Lengths of chromosomes and order of markers were checked against published maps (19) (http://www-genome.wi.mit.edu/, http://www.informatics.jax.org/; http://www.celeradiscoverysystem.com). Interval analysis of linkage to the proportions of thymic NKT cells was conducted using a version of Mapmaker/QTL (quantitative trait locus) 2.0b that was ported to run on the Pentium 4 under Windows 2000 by M. Butler. The output of Mapmaker provides a log-likelihood ratio for any putative QTL located at an arbitrary point between markers genotyped. Significance thresholds used were those suggested by Lander and Kruglyak (23) for analyses of mouse backcrosses; viz logarithm of odds (LOD) ≥3.3 for the threshold for significant linkage and LOD ≥1.9 for the threshold suggestive of linkage. Quantitative differences between samples were compared using the Mann-Whitney U (rank sum) test.

Male and female ((C57BL/6 × NOD.Nkrp1) × NOD.Nkrp1)BC1 mice were killed between 6 and 7 wk, and their thymi were harvested for flow cytometric analysis of NKT cell numbers. Single cell suspensions were stained with CD1/αGalCer tetramer-PE and αβTCR-FITC and double-staining cells enumerated (Fig. 1,a). As a small, but significant difference was observed between male and female BC1 mice (Table I; p < 0.0001; Mann-Whitney U test), only female mice were used in the subsequent analyses.

FIGURE 1.

Phenotypic analysis of NKT cell numbers in BC1 mice. A, Identification of NKT cell population in a 6-wk-old female BC1 mouse by flow cytometry of thymocytes stained with anti-αβTCR-FITC and PE-labeled, α-GalCer-loaded mCD1d tetramers. B, Histogram of the distribution of NKT cell numbers among the female BC1 population.

FIGURE 1.

Phenotypic analysis of NKT cell numbers in BC1 mice. A, Identification of NKT cell population in a 6-wk-old female BC1 mouse by flow cytometry of thymocytes stained with anti-αβTCR-FITC and PE-labeled, α-GalCer-loaded mCD1d tetramers. B, Histogram of the distribution of NKT cell numbers among the female BC1 population.

Close modal
Table I.
Strainn% NKT of Thymus
NOD.Nkrp1b (female) 15 0.17 ± 0.05 
C57BL/6 (female) 15 0.66 ± 0.13 
(C57BL/6 × NOD.Nkrp1)F1(female) 0.59 ± 0.05 
BC1 males 113 0.65 ± 0.03a 
BC1 females 139 0.53 ± 0.02a 
Strainn% NKT of Thymus
NOD.Nkrp1b (female) 15 0.17 ± 0.05 
C57BL/6 (female) 15 0.66 ± 0.13 
(C57BL/6 × NOD.Nkrp1)F1(female) 0.59 ± 0.05 
BC1 males 113 0.65 ± 0.03a 
BC1 females 139 0.53 ± 0.02a 
a

Value of p < 0.0001, Mann-Whitney U test.

The distribution of numbers of thymic NKT cells among the population of female BC1 mice was bimodal, with 17% (n = 23) of mice falling into the group with high numbers of NKT cells (0.89 ± 0.02%; mean ± SE) and the remainder (n = 116) falling into the main peak with lower numbers (0.27 ± 0.01%; Fig. 1 b). This result suggested that this phenotype was not a complex genetic trait, which would have approximated a normal distribution, but displayed relatively simple inheritance and was consistent with two dominant genes contributing to the expression of high numbers of NKT cells in this cross.

A genome map was created by typing 138 female BC1 progeny at each of 181 polymorphic SSR distributed throughout the autosomal genome (Table II). The recombination distance between each pair of markers was determined using the Mapmaker/EXP program (22), and the lengths of the chromosomes and the order of markers were checked against published maps (19). The total autosomal genome length (excluding centromeric and telomeric portions) obtained was 1507 cM, compared with 1187 cM reported for the Whitehead Institute map, consistent with suppression of recombination in the intraspecific cross used by Dietrich et al. (19). The gene order obtained from this data set conformed well to those previously published, with the following exceptions: D2mt144 mapped to chromosome 13 between D13mit54 and D13mit202, and D8mit351 mapped to chromosome 10 proximal to D10mit87. Both these locations were confirmed by searching their respective primer sequences on the Celera web site (http://www.celeradiscoverysystem.com). In addition, D10mit104 mapped distal to D10mit87, whereas the MIT map placed it proximal, but the latter order was confirmed by the Celera database. D9Mit335 and D9mit355 mapped to the same location as each other, and these two primer pairs amplified allelic fragments of the same sizes for both parental strains as well as for BALB/cJ. As the primer sequences for these two markers were found in their reported locations on Celera, the most likely explanation for this discrepancy is a packing or shipping error by Research Genetics. Finally, although D2mit280 was mapped proximal to D2mit283 in both this study and on http://www-genome.wi.mit.edu, the order was reversed on the Celera database. This could be due either to an assembly error, or else an inversion in the 129 strains, on which the Celera sequence is heavily based.

Table II.
ChromosomeMarkers
D1mit58, D1mit72, D1mit279, D1mit124, D1mit180, D1mit438, D1mit306, D1mit26, D1mit494, D1mit348, D1mit396, D1Bax243, D1Bax208, D1Bax246, D1mit108, D1Bax227, D1Bax15, D1mit351, D1mit15, D1mit540, D1mit148, D1Bax219, D1Bax225, D1Bax256, D1Bax222, D1mit406, D1Bax263, D1mit273, D1mit209 (n = 29) 
D2mit1, D2mit313, D2mit362, D2mit32, D2mit293, D2mit294, D2mit458, D2mit380, D2mit436, D2mit276, D2Bax205, D2mit17, D2mit256, D2mit490, D2mit280, D2mit283, D2mit26, D2mit496, D2mit412, D2mit528, D2mit265 (n = 21) 
D3mit270, D3mit21, D3mit22, D3mit187, D3mit12, D3mit13, D3mit320, D3mit147, D3mit19 (n = 9) 
D4mit264, D4mit1, D4mit213, D4mit139, D4mit178, D4mit301, D4mit303, D4mit11, D4mit204, D4mit226, D4mit59 (n = 11) 
D5mit387, D5mit11, D5mit255, D5mit16, D5mit314, D5mit367, D5mit245, D5mit43 (n = 8) 
D6mit236, D6mit274, D6Mit93, D6Mit209, D6Mit178, D6Mit343, D6Mit339, D6Mit57 (n = 8) 
D7mit76, D7mit225, D7mit84, D7mit233, D7mit301, D7mit101, D7mit334 (n = 7) 
D8mit281, D8mit293, D8mit54, D8mit81, D8mit242, D8mit166, D8mit140 (n = 7) 
D9mit160, D9mit90, D9Bax201, D9mit285, D9mit26, D9mit335, D9mit165, D9mit269, D9mit347, D9mit17 (n = 10) 
10 D8mit351, D10Bax30, D10mit87, D10mit104, D10mit110, D10mit224, D10mit42, D10mit12, D10mit233, D10mit204 (n = 10) 
11 D11mit77, D11mit51, D11mit131, D11mit5, D11mit357, D11mit198, D11mit336, D11mit48 (n = 8) 
12 D12mit185, D12mit148, D12mit91, D12mit4, D12mit259, D12mit133 (n = 6) 
13 D13mit3, D13mit94, D13mit54, D2mit144, D13mit202, D13mit129, D13mit78 (n = 7) 
14 D14mit207, D14mit62, D14mit63, D14mit88, D14mit239, D14mit92, D14mit197, D14mit178 (n = 8) 
15 D15mit13, D15mit82, D15mit121, D15mit71, D15mit198, D15mit37, D15mit124, D15mit193, D15mit161 (n = 9) 
16 D16mit87, D16mit98, D16mit138, D16mit139, D16mit189, D16mit86 (n = 6) 
17 D17mit133, D17mit176, D17mit68, D17mit70, D17mit93, D17mit130 (n = 6) 
18 D18mit83, D18mit37, D18mit206, D18mit106 (n = 4) 
19 D19mit61, D19mit73, D19mit88, D19mit119, D19mit53, D19mit55, D19mit6 (n = 7) 
ChromosomeMarkers
D1mit58, D1mit72, D1mit279, D1mit124, D1mit180, D1mit438, D1mit306, D1mit26, D1mit494, D1mit348, D1mit396, D1Bax243, D1Bax208, D1Bax246, D1mit108, D1Bax227, D1Bax15, D1mit351, D1mit15, D1mit540, D1mit148, D1Bax219, D1Bax225, D1Bax256, D1Bax222, D1mit406, D1Bax263, D1mit273, D1mit209 (n = 29) 
D2mit1, D2mit313, D2mit362, D2mit32, D2mit293, D2mit294, D2mit458, D2mit380, D2mit436, D2mit276, D2Bax205, D2mit17, D2mit256, D2mit490, D2mit280, D2mit283, D2mit26, D2mit496, D2mit412, D2mit528, D2mit265 (n = 21) 
D3mit270, D3mit21, D3mit22, D3mit187, D3mit12, D3mit13, D3mit320, D3mit147, D3mit19 (n = 9) 
D4mit264, D4mit1, D4mit213, D4mit139, D4mit178, D4mit301, D4mit303, D4mit11, D4mit204, D4mit226, D4mit59 (n = 11) 
D5mit387, D5mit11, D5mit255, D5mit16, D5mit314, D5mit367, D5mit245, D5mit43 (n = 8) 
D6mit236, D6mit274, D6Mit93, D6Mit209, D6Mit178, D6Mit343, D6Mit339, D6Mit57 (n = 8) 
D7mit76, D7mit225, D7mit84, D7mit233, D7mit301, D7mit101, D7mit334 (n = 7) 
D8mit281, D8mit293, D8mit54, D8mit81, D8mit242, D8mit166, D8mit140 (n = 7) 
D9mit160, D9mit90, D9Bax201, D9mit285, D9mit26, D9mit335, D9mit165, D9mit269, D9mit347, D9mit17 (n = 10) 
10 D8mit351, D10Bax30, D10mit87, D10mit104, D10mit110, D10mit224, D10mit42, D10mit12, D10mit233, D10mit204 (n = 10) 
11 D11mit77, D11mit51, D11mit131, D11mit5, D11mit357, D11mit198, D11mit336, D11mit48 (n = 8) 
12 D12mit185, D12mit148, D12mit91, D12mit4, D12mit259, D12mit133 (n = 6) 
13 D13mit3, D13mit94, D13mit54, D2mit144, D13mit202, D13mit129, D13mit78 (n = 7) 
14 D14mit207, D14mit62, D14mit63, D14mit88, D14mit239, D14mit92, D14mit197, D14mit178 (n = 8) 
15 D15mit13, D15mit82, D15mit121, D15mit71, D15mit198, D15mit37, D15mit124, D15mit193, D15mit161 (n = 9) 
16 D16mit87, D16mit98, D16mit138, D16mit139, D16mit189, D16mit86 (n = 6) 
17 D17mit133, D17mit176, D17mit68, D17mit70, D17mit93, D17mit130 (n = 6) 
18 D18mit83, D18mit37, D18mit206, D18mit106 (n = 4) 
19 D19mit61, D19mit73, D19mit88, D19mit119, D19mit53, D19mit55, D19mit6 (n = 7) 

A scan of the autosomal genome for QTL controlling numbers of thymic NKT cells was performed using the entire female dataset at an average marker separation of 8 cM. Interval analysis was performed using a version of the Mapmaker/QTL program (22) that was ported to the Windows 2000 operating system by M. Butler. The stringent linkage thresholds for experimental mouse backcrosses set by Lander and Kruglyak (23) for significant linkage (LOD ≥3.3) and suggestive linkage (LOD ≥1.9) were applied.

Two peaks of significant linkage were identified (Fig. 2). Strongest linkage localized to distal chromosome 1, with a log-likelihood ratio of 6.82 at D1mit15. The region indicated by this peak of linkage (in this work named Nkt1) was fine mapped using markers (first reported in this study; Table III) developed in, or immediately flanking, immunologically relevant genes identified as being adjacent to the D1mit15 primer sequence in the Celera (http://www.celeradiscoverysystem.com) or public (http://www-genome.wi.mit.edu) mouse genome sequence databases. The 7-cM region containing D1mit15 also contains the genes for E-selectin (Sele), lymphotactin (Scycl), CD3 ζ (Cd3z), the FcγR2b (Fcgr2b), the FcγR3 (Fcgr3), the NK cell receptor 2B4 (Nmrk), and CD48 (Cd48), none of which demonstrated higher linkage than D1mit15 (Fig. 3).

FIGURE 2.

Autosomal genome-wide scan of linkage to thymic NKT cell proportions plotting log-likelihood ratio against genetic position in the genome. The dashed lines indicate the thresholds for suggestive (short dash) and significant (long dash) linkage.

FIGURE 2.

Autosomal genome-wide scan of linkage to thymic NKT cell proportions plotting log-likelihood ratio against genetic position in the genome. The dashed lines indicate the thresholds for suggestive (short dash) and significant (long dash) linkage.

Close modal
Table III.
Marker (N/B)aGenePrimer SequencesLocation
D1bax243 pAat F-5′-CAT GAG TGG ATG GAT GGG TA-3′ 845 bp downstream 
(130/139)  R-5′-GCT TAG ATC CAT CCA CCC AT-3′  
D1bax208 pAat F-5′-AGC GAA TGG ATC CAT GAG TG-3′ 845 bp downstream 
(179/171)  R-5′-CAA CCA ACG TTG CTT AGA TCC-3′  
D1bax246 Sele F-5′-CAG GCA TCC ACT CCA AAA AT-3′ Between exons 11 and 12 
(120/100)  R-5′-TAA GTG GCC ACA GCT CAT CA-3′  
D1bax227 Scyc1 F-5′-CTC CAT ATT AGT TAT ATA GTA GTT TGC-3′ 1.842 kb upstream of exon 1 
(146/137)  R-5′-TAT GAG TTC AGC TTG GTC TAC AG-3′  
D1bax15 Cd3z F-5′-AAG AAA GCA GTT GCC ATA GCT G-3′ Between exons 1 and 2 
(228/238)  R-5′-CTA CCC TGA GCC ATT TGC AC-3′  
D1bax219 Fcgr2b F-5′-TAG TGA AAA GTC AGG CGG-3′ Between exons 1 and 2 
(130/139)  R-5′-ACA AAA TAT TAT CAC TGG GT-3′  
D1bax225 Fcgr3 F-5′-TCT GAC TTT TCA GTA AGA TG-3′ Downstream of exon 3 
(201/199)  R-5′-GCC TAA ATG TAA GTA GAA TG-3′  
D1bax256 Nmrk F-5′-CTG GGT ACC GCT CTC ACC TG-3′ Between exons 1 and 2 
(120/140)  R-5′-ACA GCT AAA ATC TCT TTT GAA G-3′  
D1bax222 Cd48 F-5′-GAT ACT TAG GAC TGA TTT ATT TC-3′ Between exons 1 and 2 
(200/221)  R-5′-GCT AAG ATG ATC CTG ATA CTA T-3′  
D1bax263 Tlr5 F-5′-CTG CTG TGG TAC ATG GAT G-3′ 5.474 kb downstream 
(151/147)  R-5′-GGC CAA CTT ACA GAG CGT AGT-3′  
D2bax205 B2m F-5′-CTC TGC CTC AAA ATA TAA GGT AG-3′ 1.8 kb downstream 
(218/250)  R-5′-CTT GTG TAA GGG TAT GCA TGC-3′  
D9bax201 Ets1 F-5′-TGG GGG CAG GAA GTA TCT TTA CAG-3′ Between exons A and III 
(211/215)  R-5′-TTC CTC CTC TCC TGA ACA GAT GAG-3′  
D10bax30 Ifngra F-5′-CAT TGT TGT AGC TCG GCC AT-3′ 6200 bp upstream 
(197/199)  R-5′-AGT CTG AAG GCC ACA CAC AA-3′  
Marker (N/B)aGenePrimer SequencesLocation
D1bax243 pAat F-5′-CAT GAG TGG ATG GAT GGG TA-3′ 845 bp downstream 
(130/139)  R-5′-GCT TAG ATC CAT CCA CCC AT-3′  
D1bax208 pAat F-5′-AGC GAA TGG ATC CAT GAG TG-3′ 845 bp downstream 
(179/171)  R-5′-CAA CCA ACG TTG CTT AGA TCC-3′  
D1bax246 Sele F-5′-CAG GCA TCC ACT CCA AAA AT-3′ Between exons 11 and 12 
(120/100)  R-5′-TAA GTG GCC ACA GCT CAT CA-3′  
D1bax227 Scyc1 F-5′-CTC CAT ATT AGT TAT ATA GTA GTT TGC-3′ 1.842 kb upstream of exon 1 
(146/137)  R-5′-TAT GAG TTC AGC TTG GTC TAC AG-3′  
D1bax15 Cd3z F-5′-AAG AAA GCA GTT GCC ATA GCT G-3′ Between exons 1 and 2 
(228/238)  R-5′-CTA CCC TGA GCC ATT TGC AC-3′  
D1bax219 Fcgr2b F-5′-TAG TGA AAA GTC AGG CGG-3′ Between exons 1 and 2 
(130/139)  R-5′-ACA AAA TAT TAT CAC TGG GT-3′  
D1bax225 Fcgr3 F-5′-TCT GAC TTT TCA GTA AGA TG-3′ Downstream of exon 3 
(201/199)  R-5′-GCC TAA ATG TAA GTA GAA TG-3′  
D1bax256 Nmrk F-5′-CTG GGT ACC GCT CTC ACC TG-3′ Between exons 1 and 2 
(120/140)  R-5′-ACA GCT AAA ATC TCT TTT GAA G-3′  
D1bax222 Cd48 F-5′-GAT ACT TAG GAC TGA TTT ATT TC-3′ Between exons 1 and 2 
(200/221)  R-5′-GCT AAG ATG ATC CTG ATA CTA T-3′  
D1bax263 Tlr5 F-5′-CTG CTG TGG TAC ATG GAT G-3′ 5.474 kb downstream 
(151/147)  R-5′-GGC CAA CTT ACA GAG CGT AGT-3′  
D2bax205 B2m F-5′-CTC TGC CTC AAA ATA TAA GGT AG-3′ 1.8 kb downstream 
(218/250)  R-5′-CTT GTG TAA GGG TAT GCA TGC-3′  
D9bax201 Ets1 F-5′-TGG GGG CAG GAA GTA TCT TTA CAG-3′ Between exons A and III 
(211/215)  R-5′-TTC CTC CTC TCC TGA ACA GAT GAG-3′  
D10bax30 Ifngra F-5′-CAT TGT TGT AGC TCG GCC AT-3′ 6200 bp upstream 
(197/199)  R-5′-AGT CTG AAG GCC ACA CAC AA-3′  
a

N = NOD allele size; B = C57BL/6 allele size.

FIGURE 3.

Fine mapping of Nkt1 and Nkt2. Immunologically relevant genes within the 95% confidence interval on chromosome 1 are indicated (inset). The location of β2m relative to the major linkage peak on chromosome 2 is also indicated.

FIGURE 3.

Fine mapping of Nkt1 and Nkt2. Immunologically relevant genes within the 95% confidence interval on chromosome 1 are indicated (inset). The location of β2m relative to the major linkage peak on chromosome 2 is also indicated.

Close modal

The second locus (in this work named Nkt2) was indicated by a region of significant linkage between D2mit490 and D2mit280 on chromosome 2, with a maximum LOD score of 4.904. This 3-cM segment contains the gene encoding a heat shock protein (unnamed) and that encoding the receptor for the complement component C1Q (http://www.celeradiscoverysystem.com). The gene for β2-microglobulin (β2m), located by the marker D2bax205, which lies 1.8 kb downstream of the coding region, lies 16.5 cM proximal to the peak of linkage (Fig. 3). Although just outside the 95% confidence interval, it is possible that this gene contributed to the linkage peak, which is somewhat wider than that for Nkt1.

Three other genomic regions surpassed the threshold for suggestive linkage (LOD ≥1.9; Fig. 2). The first was on proximal chromosome 2, reaching a peak LOD of 1.92 between D2mit294 and D2mit458; the second was on chomosome 7, reaching a peak LOD of 1.90 at D7mit101; and the third was in the MHC at D17mit176, with a LOD of 2.00.

As a NOD.Nkrp1 congenic line was used in these studies, and this line carries C57BL/6 loci in the NKC, these data cannot exclude the possibility of a gene controlling NKT cell numbers in this region. However, because the congenic line itself expresses the same numerical deficiency of NKT cells seen in the parental NOD/Lt line (17), such a possibility is extremely unlikely.

To further characterize the effects of allelic variation at Nkt1 and Nkt2 on numbers of CD1/αGalCer tetramer+ αβTCR+ NKT cells, BC1 mice were sorted by the allele expressed at each of these loci and the numbers of thymic NKT cells were compared (Fig. 4). This analysis confirmed that the C57BL/6 allele at each locus was dominant in increasing the numbers of NKT cells present, and that the effects of the two loci were approximately equal.

FIGURE 4.

Box plots indicating the phenotypic effects of inheritance of a single C57BL/6 (b) allele at either Nkt1 or Nkt2, or else at both loci.

FIGURE 4.

Box plots indicating the phenotypic effects of inheritance of a single C57BL/6 (b) allele at either Nkt1 or Nkt2, or else at both loci.

Close modal

Fitting both Nkt1 and Nkt2 with the Mapmaker/QTL map command produced a combined LOD score of 11.84. As the LOD scores of Nkt1 and Nkt2 were 6.87 and 4.87, respectively (total LOD of 11.74), this result was consistent with the loci acting in an additive fashion. These two loci together accounted for 33% of all variance in NKT cell numbers in the BC panel.

NOD mice are a well-established model of type 1 (autoimmune) diabetes mellitus characterized by spontaneous lymphocytic infiltration of the pancreatic islets of Langerhans and specific destruction of the insulin-producing β cells, resulting in hypoinsulinemia and disturbed glucose homeostasis (24). Extensive genetic linkage analysis of diabetes in this model has been performed, and over 20 loci affecting this phenotype have been localized (25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41). Although many of these genetic regions are associated with credible candidate genes, one of the few to have been validated is Idd13 on chromosome 2 (29), in which transgenic rescue provided substantial support for a role for β2m in contributing to the diabetes susceptibility encoded by loci within the Idd13 linkage region (42).

When exposed to mycobacteria (Mycobacterium bovis), NOD mice are protected from the onset of diabetes, but may instead rapidly develop a systemic autoimmune syndrome with several features of systemic lupus erythematosus (SLE) (43, 44, 45), including hemolytic anemia, antinuclear autoantibodies (46), and immune complex glomerulonephritis (47) (reviewed in Ref.48). This syndrome has been mapped in a backcross to the BALB/c strain, and loci conferring susceptibility to autoantibody production were localized to three regions, Bana1 at the MHC on chromosome 17, Bana2 on proximal chromosome 10, and Bana3 on distal chromosome 1 (20). The latter locus maps to the same chromosomal region as genes controlling susceptibility to antinuclear autoantibodies in three models of SLE related to the NZB/W model Sle1, Nba2, and Lbw7 (49, 50, 51) and is syntenic with linkage to lupus in patients, which has been mapped to human chromosome 1q23 in genome-wide linkage studies (52, 53). An even broader significance of this region to systemic autoimmunity is suggested by its involvement in two different models of autoimmune arthritis (54, 55).

NKT cells are a subset of T cells that, together with NK and dendritic cells, appear to form part of an immunological rapid response unit involved in determining, in part, the extent and character of a wide range of immune responses (56, 57, 58, 59, 60, 61, 62, 63). We have previously reported that NOD mice have fewer thymic NKT cells than all other inbred mouse strains examined (3, 4), and demonstrated by adoptive transfer that this deficiency was associated with susceptibility to disease (3, 9). Similarly, there is some evidence that such a relationship may exist between NKT cell deficiency and SLE (7). In this study, we found that genetic control of thymic NKT cell numbers mapped to the distal part of the Idd13 region of chromosome 2 and to the Bana3/Sle1/Nba2/Lbw7 region of chromosome 1. These linkages are therefore consistent with an important role of NKT cells in the regulation of autoimmune responses in diabetes and lupus, and suggest that both Idd13 and Bana3 act through control of NKT cell numbers. It may be significant that the genes encoding two critical components of the NKT cell-activating synapse, β2m and CD3 ζ, lie within these regions.

We thank Michael C. Butler for debugging and recompiling Mapmaker/QTL to run on the Pentium 4, and Rama Kandasamy, Tim Butler, Jason Coombes, Jason Wills, Jan-Marek Weislogel, and Arnout van der Plas for technical assistance. We are grateful for the encouragement and unfailing support of Mitch Kronenberg throughout these studies.

1

This work was funded by the National Health and Medical Research Council of Australia (NHMRC) and the Juvenile Diabetes Research Foundation. A.G.B. is a recipient of a Senior Research Fellowship from the NHMRC.

4

Abbreviations used in this paper: NOD, nonobese diabetic; α-GalCer, α-galactosylceramide; β2m, β2-microglobulin; LOD, logarithm of odds; QTL, quantitative trait locus; SLE, systemic lupus erythematosus; SSR, simple sequence repeat.

1
Sumida, T., A. Sakamoto, H. Murata, Y. Makino, H. Takahashi, S. Yoshida, K. Nishioka, I. Iwamoto, M. Taniguchi.
1995
. Selective reduction of T cells bearing invariant Vα24JαQ antigen receptor in patients with systemic sclerosis.
J. Exp. Med.
182
:
1163
.
2
Mieza, M. A., T. Itoh, J. Q. Cui, Y. Makino, T. Kawano, K. Tsuchida, T. Koike, T. Shirai, H. Yagita, A. Matsuzawa, et al
1996
. Selective reduction of Vα14+ NK T cells associated with disease development in autoimmune-prone mice.
J. Immunol.
156
:
4035
.
3
Baxter, A. G., S. J. Kinder, K. J. Hammond, R. Scollay, D. I. Godfrey.
1997
. Association between αβTCR+CD4CD8 T-cell deficiency and IDDM in NOD/Lt mice.
Diabetes
46
:
572
.
4
Godfrey, D. I., S. J. Kinder, P. A. Silvera, A. G. Baxter.
1997
. Flow cytometric study of T cell development in NOD mice reveals a deficiency in αβTCR+CDRCD8 thymocytes.
J. Autoimmun.
10
:
279
.
5
Wilson, S. B., S. C. Kent, K. T. Patton, T. Orban, R. A. Jackson, M. Exley, S. Porcelli, D. A. Schatz, M. A. Atkinson, S. P. Balk, et al
1998
. Extreme Th1 bias of invariant Vα24JαQ T cells in type 1 diabetes. [Published erratum appears in 1999 Nature 399:84.].
Nature
391
:
177
.
6
Illes, Z., T. Kondo, J. Newcombe, N. Oka, T. Tabira, T. Yamamura.
2000
. Differential expression of NK T cell Vα24JαQ invariant TCR chain in the lesions of multiple sclerosis and chronic inflammatory demyelinating polyneuropathy.
J. Immunol.
164
:
4375
.
7
Oishi, Y., T. Sumida, A. Sakamoto, Y. Kita, K. Kurasawa, Y. Nawata, K. Takabayashi, H. Takahashi, S. Yoshida, M. Taniguchi, et al
2001
. Selective reduction and recovery of invariant Vα24JαQ T cell receptor T cells in correlation with disease activity in patients with systemic lupus erythematosus.
J. Rheumatol.
28
:
275
.
8
Gausling, R., C. Trollmo, D. A. Hafler.
2001
. Decreases in interleukin-4 secretion by invariant CD4CD8Vα24JαQ T cells in peripheral blood of patients with relapsing-remitting multiple sclerosis.
Clin. Immunol.
98
:
11
.
9
Hammond, K. J., L. D. Poulton, L. J. Palmisano, P. A. Silveira, D. I. Godfrey, A. G. Baxter.
1998
. α/β-T cell receptor (TCR)+CD4CD8 (NKT) thymocytes prevent insulin-dependent diabetes mellitus in nonobese diabetic (NOD)/Lt mice by the influence of interleukin (IL)-4 and/or IL-10.
J. Exp. Med.
187
:
1047
.
10
Lehuen, A., O. Lantz, L. Beaudoin, V. Laloux, C. Carnaud, A. Bendelac, J. F. Bach, R. C. Monteiro.
1998
. Overexpression of natural killer T cells protects Vα14 Jα281 transgenic nonobese diabetic mice against diabetes.
J. Exp. Med.
188
:
1831
.
11
Miyamoto, K., S. Miyake, T. Yamamura.
2001
. A synthetic glycolipid prevents autoimmune encephalomyelitis by inducing TH2 bias of natural killer T cells.
Nature
413
:
531
.
12
Hong, S., M. T. Wilson, I. Serizawa, L. Wu, N. Singh, O. V. Naidenko, T. Miura, T. Haba, D. C. Scherer, J. Wei, et al
2001
. The natural killer T-cell ligand α-galactosylceramide prevents autoimmune diabetes in non-obese diabetic mice.
Nat. Med.
7
:
1052
.
13
Jahng, A. W., I. Maricic, B. Pedersen, N. Burdin, O. Naidenko, M. Kronenberg, Y. Koezuka, V. Kumar.
2001
. Activation of natural killer T cells potentiates or prevents experimental autoimmune encephalomyelitis.
J. Exp. Med.
194
:
1789
.
14
Singh, A. K., M. T. Wilson, S. Hong, D. Olivares-Villagomez, C. Du, A. K. Stanic, S. Joyce, S. Sriram, Y. Koezuka, L. Van Kaer.
2001
. Natural killer T cell activation protects mice against experimental autoimmune encephalomyelitis.
J. Exp. Med.
194
:
1801
.
15
Mars, L. T., V. Laloux, K. Goude, S. Desbois, A. Saoudi, L. Van Kaer, H. Lassmann, A. Herbelin, A. Lehuen, R. S. Liblau.
2002
. Cutting edge: Vα14-Jα281 NKT cells naturally regulate experimental autoimmune encephalomyelitis in nonobese diabetic mice.
J. Immunol.
168
:
6007
.
16
Lord, C. J., S. Howlett, P. A. Lyons, L. B. Peterson, L. S. Wicker, J. A. Todd.
2001
. The murine diabetes loci Idd1, Idd3, Idd5, Idd9 and Idd17/10/18 do not control thymic CD4CD8/TCRαβ+ deficiency in the nonobese diabetic mouse.
Mamm. Genome
12
:
175
.
17
Poulton, L. D., M. J. Smyth, C. G. Hawke, P. Silveira, D. Shepherd, O. V. Naidenko, D. I. Godfrey, A. G. Baxter.
2001
. Cytometric and functional analyses of NK and NKT cell deficiencies in NOD mice.
Int. Immunol.
13
:
887
.
18
Matsuda, J. L., O. V. Naidenko, L. Gapin, T. Nakayama, M. Taniguchi, C.-R. Wang, Y. Koezuka, M. Kronenberg.
2000
. Tracking the response of natural killer T cells to a glycolipid antigen using CD1 tetramers.
J. Exp. Med.
192
:
741
.
19
Dietrich, W. F., J. Miller, R. Steen, M. A. Merchant, D. Damron-Boles, Z. Husain, R. Dredge, M. J. Daly, K. A. Ingalls, J. T. O’Connor, et al
1996
. A comprehensive genetic map of the mouse genome.
Nature
380
:
149
.
20
Jordan, M. A., P. A. Silveira, D. P. Shepherd, C. Chu, S. J. Kinder, J. Chen, L. J. Palmisano, L. D. Poulton, A. G. Baxter.
2000
. Linkage analysis of systemic lupus erythematosus induced in diabetes-prone nonobese diabetic mice by Mycobacterium bovis.
J. Immunol.
165
:
1673
.
21
Silveira, P. A., A. G. Baxter, W. E. Cain, I. R. van Driel.
1999
. A major linkage region on distal chromosome 4 confers susceptibility to mouse autoimmune gastritis.
J. Immunol.
162
:
5106
.
22
Lander, E. S., P. Green, J. Abrahamson, A. Barlow, M. J. Daly, S. E. Lincoln, L. Newburg.
1987
. MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations.
Genomics
1
:
174
.
23
Lander, E., L. Kruglyak.
1995
. Genetic dissection of complex traits: guidelines for interpreting and reporting linkage results.
Nat. Genet.
11
:
241
.
24
Makino, S., K. Kunimoto, Y. Muraoka, Y. Mizushima, K. Katagiri, Y. Tochino.
1980
. Breeding of a non-obese, diabetic strain of mice.
Exp. Anim.
29
:
1
.
25
Baxter, A. G., A. Cooke.
1995
. The genetics of the NOD mouse.
Diabetes Metab. Rev.
11
:
315
.
26
McAleer, M. A., P. Reifsnyder, S. M. Palmer, M. Prochazka, J. M. Love, J. B. Copeman, E. E. Powell, N. R. Rodrigues, J. B. Prins, D. V. Serreze, et al
1995
. Crosses of NOD mice with the related NON strain: a polygenic model for IDDM.
Diabetes
44
:
1186
.
27
Podolin, P. L., P. Denny, C. J. Lord, N. J. Hill, J. A. Todd, L. B. Peterson, L. S. Wicker, P. A. Lyons.
1997
. Congenic mapping of the insulin-dependent diabetes (Idd) gene, Idd10, localizes two genes mediating the Idd10 effect and eliminates the candidate Fcgr1.
J. Immunol.
159
:
1835
.
28
Podolin, P. L., P. Denny, N. Armitage, C. J. Lord, N. J. Hill, E. R. Levy, L. B. Peterson, J. A. Todd, L. S. Wicker, P. A. Lyons.
1998
. Localization of two insulin-dependent diabetes (Idd) genes to the Idd10 region on mouse chromosome 3.
Mamm. Genome
9
:
283
.
29
Serreze, D. V., M. Bridgett, H. D. Chapman, E. Chen, S. D. Richard, E. H. Leiter.
1998
. Subcongenic analysis of the Idd13 locus in NOD/Lt mice: evidence for several susceptibility genes including a possible diabetogenic role for β2-microglobulin.
J. Immunol.
160
:
1472
.
30
Kanagawa, O., G. Xu, A. Tevaarwerk, B. A. Vaupel.
2000
. Protection of nonobese diabetic mice from diabetes by gene(s) closely linked to IFN-γ receptor loci.
J. Immunol.
164
:
3919
.
31
Brodnicki, T. C., P. McClive, S. Couper, G. Morahan.
2000
. Localization of Idd11 using NOD congenic mouse strains: elimination of Slc9a1 as a candidate gene.
Immunogenetics
51
:
37
.
32
Lyons, P. A., N. Armitage, F. Argentina, P. Denny, N. C. Hill, C. J. Lord, M. B. Wilusz, L. B. Peterson, L. S. Wicker, J. A. Todd.
2000
. Congenic mapping of the type 1 diabetes locus, Idd3, to a 780-kb region of mouse chromosome 3: identification of a candidate segment of ancestral DNA by haplotype mapping.
Genome Res.
10
:
446
.
33
Fox, C. J., A. D. Paterson, S. M. Mortin-Toth, J. S. Danska.
2000
. Two genetic loci regulate T cell-dependent islet inflammation and drive autoimmune diabetes pathogenesis.
Am. J. Hum. Genet.
67
:
67
.
34
Lyons, P. A., W. W. Hancock, P. Denny, C. J. Lord, N. J. Hill, N. Armitage, T. Siegmund, J. A. Todd, M. S. Phillips, J. F. Hess, et al
2000
. The NOD Idd9 genetic interval influences the pathogenicity of insulitis and contains molecular variants of Cd30, Tnfr2, and Cd137.
Immunity
13
:
107
.
35
Hill, N. J., P. A. Lyons, N. Armitage, J. A. Todd, L. S. Wicker, L. B. Peterson.
2000
. NOD Idd5 locus controls insulitis and diabetes and overlaps the orthologous CTLA4/IDDM12 and NRAMP1 loci in humans.
Diabetes
49
:
1744
.
36
Lyons, P. A., N. Armitage, C. J. Lord, M. S. Phillips, J. A. Todd, L. B. Peterson, L. S. Wicker.
2001
. Mapping by genetic interaction: high-resolution congenic mapping of the type 1 diabetes loci Idd10 and Idd18 in the NOD mouse.
Diabetes
50
:
2633
.
37
Rogner, U. C., C. Boitard, J. Morin, E. Melanitou, P. Avner.
2001
. Three loci on mouse chromosome 6 influence onset and final incidence of type I diabetes in NOD.C3H congenic strains.
Genomics
74
:
163
.
38
Lamhamedi-Cherradi, S. E., O. Boulard, C. Gonzalez, N. Kassis, D. Damotte, L. Eloy, G. Fluteau, M. Levi-Strauss, H. J. Garchon.
2001
. Further mapping of the Idd5.1 locus for autoimmune diabetes in NOD mice.
Diabetes
50
:
2874
.
39
Grattan, M., Q. S. Mi, C. Meagher, T. L. Delovitch.
2002
. Congenic mapping of the diabetogenic locus Idd4 to a 5.2-cM region of chromosome 11 in NOD mice: identification of two potential candidate subloci.
Diabetes
51
:
215
.
40
Boulard, O., D. Damotte, N. Deruytter, G. Fluteau, C. Carnaud, H. J. Garchon.
2002
. An interval tightly linked to but distinct from the H2 complex controls both overt diabetes (Idd16) and chronic experimental autoimmune thyroiditis (Ceat1) in nonobese diabetic mice.
Diabetes
51
:
2141
.
41
Brodnicki, T. C., F. Quirk, G. Morahan.
2003
. A susceptibility allele from a non-diabetes-prone mouse strain accelerates diabetes in NOD congenic mice.
Diabetes
52
:
218
.
42
Hamilton-Williams, E. E., D. V. Serreze, B. Charlton, E. A. Johnson, M. P. Marron, A. Mullbacher, R. M. Slattery.
2001
. Transgenic rescue implicates β2-microglobulin as a diabetes susceptibility gene in nonobese diabetic (NOD) mice.
Proc. Natl. Acad. Sci. USA
98
:
11533
.
43
Baxter, A. G., A. C. Horsfall, D. Healey, P. Ozegbe, S. Day, D. G. Williams, A. Cooke.
1994
. Mycobacteria precipitate an SLE-like syndrome in diabetes-prone NOD mice.
Immunology
83
:
227
.
44
Baxter, A. G., A. Cooke.
1994
. Peptide therapy for diabetes.
Lancet
343
:
1169
.
45
Baxter, A. G., D. Healey, A. Cooke.
1994
. Mycobacteria precipitate autoimmune rheumatic disease in NOD mice via an adjuvant-like activity.
Scand. J. Immunol.
39
:
602
.
46
Horsfall, A. C., R. Howson, P. Silveira, D. G. Williams, A. G. Baxter.
1998
. Characterization and specificity of B-cell responses in lupus induced by Mycobacterium bovis in NOD/Lt mice.
Immunology
95
:
8
.
47
Hawke, C. G., D. M. Painter, P. D. Kirwan, R. R. van Driel, A. G. Baxter.
2003
. Mycobacteria, an environmental enhancer of lupus nephritis in a mouse model of systemic lupus erythematosus.
Immunology
108
:
70
.
48
Silveira, P. A., A. G. Baxter.
2001
. The NOD mouse as a model of SLE.
Autoimmunity
34
:
53
.
49
Morel, L., C. Mohan, Y. Yu, B. P. Croker, N. Tian, A. Deng, E. K. Wakeland.
1997
. Functional dissection of systemic lupus erythematosus using congenic mouse strains.
J. Immunol.
158
:
6019
.
50
Drake, C. G., S. K. Babcock, E. Palmer, B. L. Kotzin.
1994
. Genetic analysis of the NZB contribution to lupus-like autoimmune disease in (NZB × NZW)F1 mice.
Proc. Natl. Acad. Sci. USA
91
:
4062
.
51
Kono, D. H., R. W. Burlingame, D. G. Owens, A. Kuramochi, R. S. Balderas, D. Balomenos, A. N. Theofilopoulos.
1994
. Lupus susceptibility loci in New Zealand mice.
Proc. Natl. Acad. Sci. USA
91
:
10168
.
52
Moser, K. L., B. R. Neas, J. E. Salmon, H. Yu, C. Gray-McGuire, N. Asundi, G. R. Bruner, J. Fox, J. Kelly, S. Henshall, et al
1998
. Genome scan of human systemic lupus erythematosus: evidence for linkage on chromosome 1q in African-American pedigrees.
Proc. Natl. Acad. Sci. USA
95
:
14869
.
53
Gaffney, P. M., G. M. Kearns, K. B. Shark, W. A. Ortmann, S. A. Selby, M. L. Malmgren, K. E. Rohlf, T. C. Ockenden, R. P. Messner, R. A. King, et al
1998
. A genome-wide search for susceptibility genes in human systemic lupus erythematosus sib-pair families.
Proc. Natl. Acad. Sci. USA
95
:
14875
.
54
Ji, H., D. Gauguier, K. Ohmura, A. Gonzalez, V. Duchatelle, P. Danoy, H. J. Garchon, C. Degott, M Lathrop, C. Benoist, D. Mathis.
2001
. Genetic influences on the end-stage effector phase of arthritis.
J. Exp. Med.
194
:
321
.
55
Johansson, A. C., M. Sundler, P. Kjellen, M. Johannesson, A. Cook, A. K. Lindqvist, B. Nakken, A. I. Bolstad, R. Jonsson, M. Alarcon-Riquelme, R. Holmdahl.
2001
. Genetic control of collagen-induced arthritis in a cross with NOD and C57BL/10 mice is dependent on gene regions encoding complement factor 5 and FcγRIIb and is not associated with loci controlling diabetes.
Eur. J. Immunol.
31
:
1847
.
56
Carnaud, C., D. Lee, O. Donnars, S. H. Park, A. Beavis, Y. Koezuka, A. Bendelac.
1999
. Cutting edge: cross-talk between cells of the innate immune system: NKT cells rapidly activate NK cells.
J. Immunol.
163
:
4647
.
57
Eberl, G., H. R. MacDonald.
2000
. Selective induction of NK cell proliferation and cytotoxicity by activated NKT cells.
Eur. J. Immunol.
30
:
985
.
58
Miyamoto, M., M. Emoto, V. Brinkmann, N. van Rooijen, R. Schmits, E. Kita, S. H. Kaufmann.
2000
. Cutting edge: contribution of NK cells to the homing of thymic CD4+NKT cells to the liver.
J. Immunol.
165
:
1729
.
59
Smyth, M. J., N. Y. Crowe, D. I. Godfrey.
2001
. NK cells and NKT cells collaborate in host protection from methylcholanthrene-induced fibrosarcoma.
Int. Immunol.
13
:
459
.
60
Hayakawa, Y., K. Takeda, H. Yagita, S. Kakuta, Y. Iwakura, L. Van Kaer, I. Saiki, K. Okumura.
2001
. Critical contribution of IFN-γ and NK cells, but not perforin-mediated cytotoxicity, to anti-metastatic effect of α-galactosylceramide.
Eur. J. Immunol.
31
:
1720
.
61
Metelitsa, L. S., O. V. Naidenko, A. Kant, H. W. Wu, M. J. Loza, B. Perussia, M. Kronenberg, R. C. Seeger.
2001
. Human NKT cells mediate antitumor cytotoxicity directly by recognizing target cell CD1d with bound ligand or indirectly by producing IL-2 to activate NK cells.
J. Immunol.
167
:
3114
.
62
Smyth, M. J., N. Y. Crowe, D. G. Pellicci, K. Kyparissoudis, J. M. Kelly, K. Takeda, H. Yagita, D. I. Godfrey.
2002
. Sequential production of interferon-γ by NK1.1+ T cells and natural killer cells is essential for the antimetastatic effect of α-galactosylceramide.
Blood
99
:
1259
.
63
Takahashi, T., S. Chiba, M. Nieda, T. Azuma, S. Ishihara, Y. Shibata, T. Juji, H. Hirai.
2002
. Cutting edge: analysis of human Vα24+CD8+ NK T cells activated by α-galactosylceramide-pulsed monocyte-derived dendritic cells.
J. Immunol.
168
:
3140
.