Detailed assessment of how the structural properties of T cell receptors affect clonal repertoires of Ag-specific cells is a prerequisite for a better understanding of human antiviral immunity. Herein we examine the α TCR repertoires of CD8 T cells reactive against the influenza A viral epitope M158–66, restricted by HLA-A2.1. Using molecular cloning, we systematically studied the impact of α-chain usage in the formation of T cell memory and revealed that M158–66-specific, clonally diverse VB19 T cells express α-chains encoded by multiple AV genes with different CDR3 sizes. A unique feature of these α TCRs was the presence of CDR3 fitting to an AGA(Gn)GG-like amino acid motif. This pattern was consistent over time and among different individuals. Further molecular assessment of human CD4+CD8 and CD4CD8+ thymocytes led to the conclusion that the poly-Gly/Ala runs in CDR3α were a property of immune, but not naive, repertoires and could be attributed to influenza exposure. Repertoires of T cell memory are discussed in the context of clonal diversity, where poly-Gly/Ala runs in the CDR3 of α- and β-chains might provide high levels of TCR flexibility during Ag recognition while gene-encoded CDR1 and CDR2 contribute to the fine specificity of the TCR-peptide MHC interaction.

CD8 T cells express αβ TCRs that bind to immunogenic peptides loaded into class I MHC molecules (pMHC)3 and initiate formation of the supramolecular activation clusters between T cells and APCs (1, 2, 3, 4). The T cells that have an identical clonal origin express a unique αβ TCR that defines clonal fine specificity to Ag. Multiple clones with diverse, and to some extent overlapping, specificities provide protective immunity against viral infections. After viral clearance, a number of epitope-specific clones are retained, thus creating long-lasting memory TCR repertoires. It is currently agreed that clonal survival during and after viral clearance is a final result of multiple factors. Among these factors is the molecular nature of αβ TCRs.

Ag-driven clonally expressed β TCR repertoires have been intensively examined in experimental animal models (5, 6, 7) and human diseases (8, 9, 10, 11). These studies have concluded that repetitive antigenic challenges correlate with increased frequencies of Ag-specific, clonally diverse cells that share amino acid sequences within CDR3 of their expressed β TCRs “fitting best” to epitope recognition. Since these memory cells are at high precursor frequencies and usually have lower TCR-mediated activation requirements than do naive cells, they provide rapid pathogen clearance in the case of reinfection. Although β TCR-mediated selections in response to the immunogenic epitopes are well documented, little is known about α TCR involvement in selection of human CD8 T cells.

Crystallization of TCR-pMHC has revealed that α-chains might provide a significant contribution to the interactive interface, varying from 37% to 74% of the total surface (12, 13, 14, 15, 16). This implies that α TCR usage might be a critical element that defines whether Ag-reactive cells are saved in a memory compartment. In this study, we sought to investigate α TCRs expressed by memory cells, and we observed several previously unknown properties that might determine the clonal nature of memory repertoires.

Human CD8 T cell reactivity against the influenza A matrix (M1) protein-derived epitope, M158–66, represents an exceptional system to understand the molecular properties of α TCRs expressed by memory cells selected in humans. Because the M1 protein is highly conserved among influenza A viral strains, reinfections during a lifetime (17) result in formation of the strong CTL recall responses against the M158–66 epitope practically in all HLA-A2 (HLA-A*0201) individuals (10, 11, 18, 19, 20). For instance, by age 15 years HLA-A2 children possess a well-established M1-specific memory pool comprised of CD8 T cells expressing BV19 gene-encoded β-chains (formerly BV17) (20, 21).

Our previous studies revealed that multiple VB19 clones specific to M158–66 coexist in middle-aged individuals (22, 23, 24). Those clones were defined based on the uniqueness of the nucleotide composition in the V-NDN-J regions encoding β-chains. Therefore, they were referred to as VB19 clonotypes since the α TCR usage remained unknown. These influenza-specific clonotypes utilize BV19 gene-encoded β-chains with two CDR3 sizes fitting into IRSS- and IGS-like motifs. Although individual VB19 CD8 T clonotypes expressed structurally identical β TCRs, they have different M158–66:HLA-A2.1 tetramer (M1 tetramer) binding capacity and peptide concentration-dependent proliferation in cell cultures (23). This suggests that even if VB19 cells were selected due to the best CDR3β “fit” to M158–66:HLA-A2 recognition, their α TCR usage could be different. Therefore, we reasoned that memory cells from a single family, VB19, could be used to examine the breadth of the memory α TCR repertoire and provide insight on why β-VB19 chains alone are not exclusive determinants in clonal selection (10, 23).

It has been reported that the optimal αβ TCR interaction with pMHC requires that CDR3α and CDR3β should have similar sizes for proper engagement of Vα and Vβ domains (25). Our present study demonstrates that VB19 cells express AJ42 gene-encoded α TCRs, which contain multiple (up to five) poly-Gly/Ala runs in the long CDR3α, allowing engagement of cells from different VA families, thus utilizing different CDR1α and CDR2α in epitope recognition. This observation occurred in five individuals whose M1-specific cells were selected using M1 tetramer and VB19 mAbs. During the study period, we did not find preselection for poly-Gly/Ala runs in the CDR3α in human CD4CD8+ thymocytes from the T cell subset (VA27-JA42) that was most prominent in response to flu-M158–66 epitope. Taken together, our study led to the conclusion that the selection of T cells possessing poly-Gly/Ala runs within their CDR3 was driven in response to the influenza A M158–66 epitope rather than by biased gene recombination or thymic selection. We propose that the presence of poly-Gly/Ala runs in the CDR3s of α and β TCRs contributes to conformational flexibility of Ag-specific receptors. This implies that a robust immune response associates not only with T cells whose CDR3α and CDR3β, which are generated during random gene recommendations, have the “fittest” complementarity to pMHC, but also with T cells whose Ag receptors utilize germline gene-encoded regions if CDR3s have high levels of flexibility.

Five healthy blood donors, donors A, B, C, D, and E (50, 47, 40, 56, and 26 years old, respectively), were defined to be HLA-A2.1 (HLA-A*0201)-positive based on MHC class I typing with the Biotest SSP (sequence-specific primer) system (Biotest Diagnostics).

Thymic tissue was collected as a discard during reconstructive surgical procedure on an HLA-A2.1-positive 3-mo-old child having a congenital cardiac defect, under a protocol approved by the Internal Review Board of The Children’s Hospital of Wisconsin.

CD8 T cells were isolated from peripheral blood collected from donors A–E using anti-CD8 microbeads (Miltenyi Biotec), following the manufacturer’s recommendations. The purity of isolated CD8 T cells usually was >95%. To generate peptide-specific cell lines, CD8 T cells (0.25 × 106 cells/ml) were cocultured with TAP1/TAP2-defective target T2 (174 × CEM.T2, American Type Culture Collection (ATCC)) cells (0.05 × 106 cells/ml) in 4 ml complete culture medium/well. The T2 cells were incubated overnight with M158–66 peptide (1 × 10−6 M). Before the setting of M1-specific cultures, peptide-pulsed T2 cells were irradiated (3000 rad) and intensively washed to avoid residual peptide. The complete culture AIM-V medium (Invitrogen) contained human rIL-2 (10 U/ml) (BD Pharmingen) and was supplemented with 14% supernatant from the IL-2-producing MLA 144 cell line (TIB 201, ATCC). The CD8 T cell lines were cultured in 12-well plates and split with rIL-2-containing media every 3 days. Once a week cultures were restimulated with peptide-coated, irradiated T2 cells. The cultures where T2 cells were not coated with peptide served as controls.

The peptide M158–66 (GILGFVFTL) was synthesized on Pepsyn KA resin (BioSource International) using a 9050 PepSynthesizer (Millipore). Peptide was purified by reverse-phase HPLC (>90% purity) using a C18 column (Vydac).

To examine the frequency of M158–66-specific VB19 cells, CD8 T cells were sampled from the cultured lines and costained with M158–66/HLA-A2.1 tetramer (M1 tetramer) (Beckman Coulter) and VB19 family-specific mAbs (Immunotech) according to the manufacturers’ recommendations. Initially cells were stained with allophycocyanin-labeled M1 tetramer for 20 min at room temperature, and then FITC-labeled VB19 mAbs were added for an additional 20 min under the same conditions. The stained cells were washed in a copious volume of FACS buffer (PBS, 2% FCS, 0.2% sodium azide). Flow cytometry was performed using a FACSVantage and FACSCalibur (BD Biosciences). To isolate M1-specific cells, CD8 T cell line samples were stained with M1 tetramer and VB19 mAbs (donors A, B, and C) or M1 tetramer alone (donor D), and then FACS sorted using a MoFlo sorter (Dako). Purity of the FACS-sorted cells was >95% (data not shown).

The thymus was disaggregated by passing through a wire mesh. Cells were suspended in RPMI 1640 medium (Invitrogen), 0.1% sodium azide, and 2% FCS, and stained with mouse mAbs to human cell surface markers: CD3-FITC conjugate, CD4-Tri-Color conjugate, and CD8-R-PE conjugate (Caltag Laboratories). A three-color sort was performed using FACStar (BD Biosciences), and single-positive CD4+CD8 and CD4CD8+ thymocytes were collected. Primary gating was set on the CD3 marker, which resolved the thymocytes into three populations, CD3, CD3low, and CD3high. The CD3high population was further divided on the basis of CD4 and CD8 expression. Cells were collected into 0.5 ml of FCS so that the final concentration in the tube was 10% (5 ml final volume).

CD8 T cells separated from peripheral blood, cultured lines, or FACS sorting after M1 tetramer/VB19 mAbs staining were used for RNA isolation and cDNA synthesis as previously described (22, 26). Genomic DNA was prepared from FACS-sorted thymocytes treated with nucleic acid lysis buffer (10 mM Tris (pH 8.2), 0.4 M NaCl, 2 mM EDTA) in the presence of SDS and proteinase (26). Then the cells were incubated overnight at 45°C to ensure complete lysis. After the incubation, proteins were precipitated by adding 5.3 M NaCl, and DNA was precipitated from the supernatant with ethanol (27). Before generation of α TCR-specific CDR3 spectratypes, genomic DNA and cDNA samples were titrated using semiquantitative PCR amplification of the TCR CB region, as described (26, 28). Briefly, serially diluted cDNA (or genomic DNA) aliquots were amplified 24 cycles using forward and reverse CB-specific primers under nonsaturating PCR conditions, and resolved on denaturing 50% urea/5% polyacrylamide gels. The cDNA (or genomic DNA) aliquots of cDNA that contained an equal quantity of total β TCR transcripts were used for sequential CDR3α spectratype-generating PCR amplifications.

Detailed descriptions of CDR3 spectratyping conditions were published previously (22, 26). Briefly, cDNA samples were amplified in a PCR cocktail that contained forward VA family-specific primer and reverse CA-specific primer labeled from the 5′ end with FAM. The nucleotide sequences of 34 VA family-specific and CA-specific primers were described elsewhere (29). To examine the α TCR repertoires of human thymocytes, genomic DNA samples were amplified using VA27- and JA42-specific primers. The PCR cycle consisted of 0.5 min at 94°C for denaturation, 0.5 min at 58°C for annealing, and 1.5 min at 72°C for elongation. The final elongation was extended to an additional 7 min at 72°C. After 31 cycles of PCR amplification, 10 μl of VA-CA-amplified cDNA products were loaded and run on 50% urea/5% polyacrylamide sequencing gels for 2 h 15 min to 3 h 45 min depending on VA-CA primer combination. This technique ensures CDR3α bands visualization after gel scanning on the fluorescence detection system FluorImager 595 (Molecular Dynamics). Multiple CDR3α bands within a given VA family reflect clonal complexity based on α TCR transcript size heterogeneity.

cDNA samples generated from M1 tetramer/VB19 mAbs-stained, FACS-sorted CD8 T cells (donors A–C), M1 tetramer-stained (donor D), and nonsorted cultured cells (donor E) were amplified with unlabeled CA-specific primer and one of VA family-specific primers in separate nonsaturated PCR reactions and immediately subcloned into the plasmid vector pCR4-TOPO (Invitrogen). The following cDNA libraries were generated and screened: VA8 (includes VA8.1 and VA8.3), VA8.6, VA10, VA12 (includes VA12.1, VA12.2, and VA12.3), VA27, VA29, VA34, and VA35. VB19-CDR3β plasmid subclones of donor A cultures were described elsewhere (23). From 48 to 96 plasmid subclones from each VA cDNA library have been sequenced using a Taq DyeDeoxy terminator cycle sequencing kit (Applied Biosystems). Analysis of VA and JA regions flanking CDR3α nucleotide sequences indicated <0.25% divergence from the genomic sequences, which can be attributed to the MMLV reverse transcriptase and/or TaqDNA polymerase infidelity. The assignment to AV and AJ gene families of the subcloned and sequenced CDR3α plasmid inserts is given according to ImMunoGeneTics (IMGT). CDR3α size count includes C (from CASS) and F (FGXG) according to IMGT.

The VA and JA family origins of the influenza A M158–66-specific VB19 clonotypes from donors A–E are shown in supplemental Table I.4 Here we depict each clonotype number within VA cDNA libraries, their CDR3α sizes (aa), amino acid (highlighted in red), and nucleotide sequences within the AV-JA gene junction. The data sets corresponding to VA27-JA42 repertoires of the CD4CD8+ and CD4+CD8 thymocytes and CD8 T cells from M158–66-specific cell culture (donor A, year 2004, 5 wk culture) are given in supplemental Table II. The CDR3α loops are shown in red; nontemplate-encoded amino acids in CDR3α are revealed in blue and are underlined. Clonotype unique identifiers are labeled as ID.

To define the breadth of the α TCR repertoire of flu-specific cells that express VB19 β-chains with high affinity to the M158–66 epitope (19), we used CDR3α spectratyping. Lack of available VA family-specific mAbs and the relatively low precursor frequency of M158–66-specific cells varying in a range of 0.1–0.8% in the peripheral blood CD8 T cells (30) were the two major reasons for using cell lines. To generate a sufficient number of cells to screen α TCR families responding to the flu epitope, the CD8 T cells collected from five middle-aged HLA-A2 individuals were stimulated with irradiated T2 cells charged with the M158–66 peptide to induce T cell division in vitro. After 3–5 wk in culture, cells were either FACS sorted after costaining with M1 tetramer and VB19 mAbs (donors A–C), M1 tetramer alone (donor D), or used directly (donor E). In our experiments, the purity of FACS-sorted cells gated as M1 tetramer+ or M1 tetramer+VB19+ populations usually exceeded 95% (data not shown).

We reasoned that by using RT-PCR amplification of cDNA samples with AV gene-specific primers, we would define α TCR transcriptional profiles of the cells proliferating upon peptide stimulation and binding M1 tetramer. Therefore, cDNA samples generated from nonstimulated CD8 T cells and FACS sorted with M1 tetramer alone and with M1 tetramer/VB19 mAbs combined were amplified with VA-specific primers for 29 of 52 human α TCR genes (29). To examine the α TCR repertoires of the peripheral blood, CD8 T cells, and cells FACS sorted from the epitope-specific cultures, we ran off the RT-PCR products on the CDR3α spectratyping gels having assumed that the M158–66-specific cells would be selected within VA families. The increased fraction of M158–66-specific cells within each VA family was ascertained by increased densities of the selected CDR3α sizes detected on the gel images. To provide representative examples of the α TCR repertoires of the unstimulated CD8 T cells and cells from the M158–66- specific cultures, we present CDR3α spectratypes from donor A (Fig. 1), whose α TCR repertoire of peripheral blood CD8 T cells is shown in Fig. 1,A. The α TCR transcriptional profiles of donor A M1 tetramer+ (FACS sorted, week 4 culture) and M1 tetramer+VB19+ (FACS sorted, week 5 culture) cells across and within VA families are shown in Fig. 1, B and C, respectively. The numbers on the x-axis indicate the VA family origin of α TCR transcripts, while DNA bands resolved on the y-axis and their intensities represent proportions of α TCR transcripts with identical CDR3 sizes within the respective families. Expecting that a repertoire of the peripheral blood CD8 T cells is extremely diverse, we observed multiple CDR3α bands within each of the VA families examined. While only 56% of the VA repertoire (29 of 52 families) was examined, we observed that CD8 T cells were derived from different VA families and utilized different CDR3α sizes. Representation of each VA family was skewed, with a high yield of VA24-, VA30-, and VA12-specific transcripts and a low yield of the VA14-, VA16-, and VA40-specific transcripts (Fig. 1 A). Interestingly, CDR3α spectratypes of the freshly isolated cells from donors B–E have similar patterns to donor A, namely: complexity of VA families, multiple CDR3α size usage within each of the VA families, and variation of these values among individuals (data not shown).

FIGURE 1.

TCR VA repertoires of M158–66-specific CD8 T cells based on CDR3α size heterogeneity (donor A). A, VA repertoire of CD8 T cells isolated from peripheral blood from donor A (year 2002). B and C, VA repertoire of the CD8 T cells FACS sorted from influenza M158–66-specific cultures from donor A (year 2002) using (B) M1 tetramer alone (week 4) and (C) M1 tetramer and VB19 mAbs combined (week 5). The numbers on top of the panels indicate the AV gene origin of RT-PCR-amplified α TCR transcripts (per IMGT). Solid brackets indicate dominant CDR3α bands that have been subcloned and sequenced.

FIGURE 1.

TCR VA repertoires of M158–66-specific CD8 T cells based on CDR3α size heterogeneity (donor A). A, VA repertoire of CD8 T cells isolated from peripheral blood from donor A (year 2002). B and C, VA repertoire of the CD8 T cells FACS sorted from influenza M158–66-specific cultures from donor A (year 2002) using (B) M1 tetramer alone (week 4) and (C) M1 tetramer and VB19 mAbs combined (week 5). The numbers on top of the panels indicate the AV gene origin of RT-PCR-amplified α TCR transcripts (per IMGT). Solid brackets indicate dominant CDR3α bands that have been subcloned and sequenced.

Close modal

To gain insight about the M158–66-specific α TCR repertoire, we ran off RT-PCR products from M1 tetramer+ CD8 T cells (FACS sorted, week 4 culture, donor A) as shown in Fig. 1,B. The M1 tetramer+ cells expressed α TCRs encoded by multiple VA families (VA8, 10, 14, 19–24, 12, 27, 8.6, 22, 38.2, 41, and 29). Remarkably, M158–66-specific cells from a few families utilized α TCRs with different CDR3α sizes, as shown on VA12, VA27, VA8.6, and VA29 spectratypes (Fig. 1,B, brackets). To link the mentioned α-VA transcripts to VB19+ cells, we sorted cells costained with M1 tetramer and VB19 mAbs. A representative example of α TCR repertoire of the double-positive cells from donor A is shown in Fig. 1,C. Again, we observed that M158–66-specific VB19+ cells coexpressed α TCRs encoded by different VA families with different CDR3α sizes (Fig. 1,C). Interestingly, CDR3α spectratypes of M1 tetramer+ cells (Fig. 1,B) were similar to those generated from the M1 tetramer+VB19+ subpopulation (Fig. 1 C). We showed that RT-PCR products from M1 tetramer+ and M1 tetramer+VB19+ cells were derived from VA8, VA10, VA12, VA27, VA8.6, VA22, and VA29 families. Although we did not align CDR3α bands within each VA spectratype, this observation reflects a complexity of the M158–66-specific recall α TCR repertoire with engagement of different VA domains in pMHC recognition.

This observation is evidence that flu-specific VB19+ cells utilized α TCRs from different families, and the diverse CDR3α sizes further confirm our previous observations that VB19+ cells have different clonal origins and avidities to the M158–66 epitope (22, 23, 24). Although we did not show α TCR repertoires from donors B–E whose CD8 T cells were isolated from the peripheral blood and cell cultures, there were multiple α TCR transcripts from M158–66-specific cells regardless of whether they were M1 tetramer/VB19-positive mAbs. Of note, since HLA-A2.1 T2 cells were used as APCs in our cell cultures, their α TCR transcripts could be misinterpreted as specific to M158–66 reactivity and affect the general picture of the recall α TCR repertoires. Therefore, we screened α TCR transcripts from T2 cells and defined that neither of the VA-specific primers used amplified α TCRs. We concluded that α TCRs from 4- to 5-wk cultures were derived from M158–66- specific CD8 T cells.

Since allelic exclusion is not applicable to α TCR gene rearrangement, the peripheral T cells express two α-chain mRNAs (derived from both chromosomes), and 25–30% of cells express two α TCR proteins paired with a single β TCR where only one αβ TCR heterodimer binds self-MHC (31, 32, 33). Considering the previous report where M1-specific VB19 clones were found to express primarily α-VA27 (formerly VA10.2) (11), it was somewhat surprising that VA27 α TCR mRNA/cDNA transcripts did not dominate within the α TCR transcriptional pools (Fig. 1, B and C). We reasoned that if the recall response was mediated by numerous VB19+ clonotypes, then detection of multiple VA transcripts would be expected. However, if clonal cells were selected due to the molecular nature of their α TCRs, then similarity in α TCR repertoires would be revealed even if they were collected from different individuals. Thus, we tested α TCR repertoires from four HLA-A2 blood donors. We thought that if only the VA27 family was involved in M158–66 recognition, then the probability that flu-specific cells from different donors would have identical second α TCRs (same VA families and CDR3α sizes) would be extremely low. However, if cells were selected based on α TCR fitness to flu-M158–66:HLA-A2, then they would have similar CDR3α sizes and amino acid sequences of α TCRs.

First, we reexamined whether flu-M1-reactive cells consistently utilized CDR3α of different sizes. Peptide-specific cultures from donor A were regenerated 12 mo apart and reexamined regarding α TCR usage. The representative CDR3α spectratypes of VA27 and VA8.6 cells isolated from blood, mock, and M158–66-specific cultures are shown in Fig. 2. We found that immunodominant CDR3α bands had identical sizes in all CD8 T cell lines and properly aligned with those from M1 tetramer+ sorted cells (Fig. 2, arrows). Based on spectratyping patterns, we concluded that VA27+ cells evenly utilize three different CDR3α sizes, while VA8.6 cells express mostly long CDR3α.

FIGURE 2.

Time-independent immunodominance of VA27 and VA8.6 cells in M1-specific CD8 T cell cultures (donor A). A, VA27 spectratypes. B, VA8.6 spectratypes. CD8 T cell cultures from donor A were generated every 12 mo and tested for M158–66-specific reactivity based on CDR3α spectratyping. The top numbers indicate the years when cultured lines were generated. The spectratypes are given for the CD8 T cell cultures (M1 culture) and cultures where cells were FACS sorted using M1 tetramer (M1-tet), VB19 mAbs, or both (M1-tet/VB19 mAbs). Sorted CD8 T cells isolated from the peripheral blood (ex vivo) and cultured without peptide (No peptide culture) were used as controls. The arrows indicate the subcloned and sequenced CDR3α bands.

FIGURE 2.

Time-independent immunodominance of VA27 and VA8.6 cells in M1-specific CD8 T cell cultures (donor A). A, VA27 spectratypes. B, VA8.6 spectratypes. CD8 T cell cultures from donor A were generated every 12 mo and tested for M158–66-specific reactivity based on CDR3α spectratyping. The top numbers indicate the years when cultured lines were generated. The spectratypes are given for the CD8 T cell cultures (M1 culture) and cultures where cells were FACS sorted using M1 tetramer (M1-tet), VB19 mAbs, or both (M1-tet/VB19 mAbs). Sorted CD8 T cells isolated from the peripheral blood (ex vivo) and cultured without peptide (No peptide culture) were used as controls. The arrows indicate the subcloned and sequenced CDR3α bands.

Close modal

To further verify that flu-M1-reactive cells derived from different VA families express CDR3α of different sizes, we generated and screened VA spectratypes of the cultured cells from donors B–E. The representative VA27 and VA8.6 spectratypes of M1 tetramer+VB19+ (donor B), M1 tetramer+ (donor D), and nonsorted cultured (donor E) CD8 T cells, including controls, are shown in Fig. 3. After M1 tetramer+ cells were sorted from cultures from donors B and C, we intentionally gated on M1 tetramerhighVB19high T cell populations. Again, we observed that flu-specific cells expressed AV27, 10, 8.6, 12, and 29 gene-encoded α TCR transcripts (not shown).

FIGURE 3.

CD8 T cells from VA27 and VA8 families and different CDR3α sizes consistently respond against influenza M158–66:HLA-A2 epitope. A, VA27 spectratypes. B, VA8.6 spectratypes. CD8 T cell cultures from donors B, D, and E were generated and tested for M158–66-specific reactivity using CDR3α spectratyping. M1 culture indicates nonsorted M158–66-specific CD8 T cell cultures; M1-tet corresponds to M1 tetramer+ FACS-sorted cultured cells. Sorted CD8 T cells from the peripheral blood (ex vivo) and cultured without peptide (No peptide culture) were used as the negative control. CDR3α bands from the marked areas (dotted boxes) were subcloned and sequenced.

FIGURE 3.

CD8 T cells from VA27 and VA8 families and different CDR3α sizes consistently respond against influenza M158–66:HLA-A2 epitope. A, VA27 spectratypes. B, VA8.6 spectratypes. CD8 T cell cultures from donors B, D, and E were generated and tested for M158–66-specific reactivity using CDR3α spectratyping. M1 culture indicates nonsorted M158–66-specific CD8 T cell cultures; M1-tet corresponds to M1 tetramer+ FACS-sorted cultured cells. Sorted CD8 T cells from the peripheral blood (ex vivo) and cultured without peptide (No peptide culture) were used as the negative control. CDR3α bands from the marked areas (dotted boxes) were subcloned and sequenced.

Close modal

From these findings, we concluded that frequencies of VA27 and other families were low in peripheral blood and control cultures, since we used equalized quantities of RNA/cDNA transcripts from mock and peptide-specific lines. However, stimulation with influenza-derived M158–66 peptide rapidly induced peptide-dependent proliferation of T cells derived from diverse VA families. Although VA27 spectratypes with three CDR3α bands were remarkably similar between donors, we observed that patterns of VA8.6 and other VA usage varied between individuals.

To better understand how influenza-specific cells might utilize α-chains encoded by different AV genes and having different CDR3α sizes, we used cDNA samples from M1 tetramer+VB19+, M1 tetramer+, and bulk M158–66-specific cultured CD8 T cells to generate VA family-specific cDNA libraries and sequenced CDR3 inserted into plasmid vector. Note that our methodology does not allow assigning TCR α- and β-chains to a single clone; however, we were confident that utilized cells were influenza M158–66-specific given that CDR3β spectratypings were overrepresented by VB19 family (Ref. 23 and data not shown). Hereafter, CDR3α sequences are referred to as “clonotypes” based on the uniqueness of nucleotide composition in the AV-N-AJ gene recombination sites. We thought that the number of CDR3α sequences within the VA cDNA library might serve as a proxy of the clonotypes’ relative frequencies within the respective VA family, if the α TCR repertoires possess a polyclonal nature. This also could validate M158–66-driven clonotype selection mediated through CDR3α amino acid compositions. The complete data sets of VA and JA usage, CDR3α sizes, and amino acid sequences of α TCRs expressed by M158–66-reactive clonotypes from all five donors are available in supplemental Table I.

We have demonstrated that the α TCR repertoire reactive against influenza was complex and included multiple VB19+ clonotypes from multiple VA families with different CDR3α sizes. Hereafter, we examined repertoire structure where clonotypes from the JA42 family were considered as de facto M158–66-specific. Thus, we tabulated the number of clonotypes that share CDR3α sizes within VA families and determined proportions of the JA42+ clonotypes across VA families and across CDR3α sizes. In Fig. 4 we illustrate the clonotype distribution by VA families and by CDR3α sizes (from 18 to 10 aa) for each donor (Fig. 4,A) and overall (Fig. 4,B) in a color-coded manner (Fig. 4,C). The color-coding system represents the number of clonotypes classified into five categories (shown in rows) and the proportions of corresponding JA42+ clonotypes also classified into four categories (shown in columns in three degrees of shading). We also provide the summaries for the total number of all VA clonotypes, JA42+ clonotypes, and their contribution (%) in all VA cDNA libraries by each CDR3α size and overall for each donor (Fig. 4,A) and for all five donors (Fig. 4 B). For example, donor A had 105 clonotypes, out of which 67 (64%) clonotypes were JA42+; the dominant CDR3α size was 15 aa, found in 40 clonotypes, of which 33 (83%) were JA42+ (shown in bold).

FIGURE 4.

The distribution of α TCR repertoires of the influenza-specific VB19 CD8 T cells from the HLA-A2+ individuals as a function of α-chain V domains. The JA42+ clonotype distributions based on CDR3α sizes and responding VA families are shown for each individual (A) and overall (B). The labels in the top row indicate VA family according to IMGT. The total numbers of clonotypes and JA42+ clonotypes for each VA family are shown in the rows with gray background. The total numbers of all (VA), JA42+ (JA42) clonotypes, and their contribution (%) are shown in the three last columns. The CDR3α sizes (aa) expressed by flu-M158–66-reactive VB19 clonotypes are shown in the first column. B, Illustrates the α TCR repertoire summary in a similar manner. In both A and B, each cell represents the number of clonotypes by VA family and CDR3 size and is color-coded. The color-coding system (C) represents the number of clonotypes classified into five categories (1, 2–4, 5–8, 9–11, and 12+ clonotypes) shown in rows and the proportions of corresponding JA42+ clonotypes also classified into four categories (0, 1–50, 51–99, 100%) shown in columns in three degrees of shading.

FIGURE 4.

The distribution of α TCR repertoires of the influenza-specific VB19 CD8 T cells from the HLA-A2+ individuals as a function of α-chain V domains. The JA42+ clonotype distributions based on CDR3α sizes and responding VA families are shown for each individual (A) and overall (B). The labels in the top row indicate VA family according to IMGT. The total numbers of clonotypes and JA42+ clonotypes for each VA family are shown in the rows with gray background. The total numbers of all (VA), JA42+ (JA42) clonotypes, and their contribution (%) are shown in the three last columns. The CDR3α sizes (aa) expressed by flu-M158–66-reactive VB19 clonotypes are shown in the first column. B, Illustrates the α TCR repertoire summary in a similar manner. In both A and B, each cell represents the number of clonotypes by VA family and CDR3 size and is color-coded. The color-coding system (C) represents the number of clonotypes classified into five categories (1, 2–4, 5–8, 9–11, and 12+ clonotypes) shown in rows and the proportions of corresponding JA42+ clonotypes also classified into four categories (0, 1–50, 51–99, 100%) shown in columns in three degrees of shading.

Close modal

We observed that the total number of detected clonotypes varied from 5 to 105, and JA42+ clonotypes represented from 23% to 64% of all α TCR repertoires. Among all donors, the distribution of clonotypes reflects that M158–66-specific T cells express CDR3α of different sizes; however, CDR3α with 12, 14, and 15 aa were dominant (Fig. 4,A). The dominance of specific VA families and specific CDR3α sizes was well pronounced in the overall summary (Fig. 4 B). We found that all VA8.1+ clonotypes, 67% of VA27+ clonotypes, and VA12.3+ clonotypes expressed JA42-encoded α TCRs. The JA42 usage associated with CDR3α sizes of 12 aa (80%), 15 aa (59%), and 14 and 16 aa (36% and 33%, respectively).

The high utilization of JA42+ clonotypes with different CDR3α sizes from different VA families (on average 53%) upon epitope stimulation suggested that expression of VA27 α-chains by VB19+ CD8 T cells is not an exclusive requirement to M158–66-specific reactivity. We also determined the following hierarchy of CDR3α sizes as a function of VA family origin, such as 15 > 12 > 14 aa residues. Moreover, if the VB19+ clonotypes from the JA42 family are considered as M158–66-specific, then the hierarchy of VA usage can be presented as the following rule: VA27 (three CDR3α sizes and JA42) > VA8.6 and VA35 (two CDR3α sizes and JA42) > VA8.1 to VA29 (only CDR3α of 15 aa and JA42).

To investigate whether proper combination of CDR3α sizes and amino acid sequences is a strict requirement in M158–66 recognition, while CDR1α and CDR2α usage is less stringent, we aligned α-chains of JA42+ clonotypes originating from different VA families from all five donors (Tables I) involved in this study and from donor A (Table II) alone. Strikingly, many clonotypes contained poly-Gly/Ala runs where only two Gly were AJ42-gene encoded (Table II, underlined characters). Remarkably, the M158–66- specific clonotypes expressing long CDR3α chains (14 and 15 aa) contained nontemplate-encoded Gly/Ala runs (Table II, underlined characters) with other nonpolar, polar, and charged amino acids. Importantly, although α TCRs might have identical amino acid sequences in CDR3, they were encoded by different nucleotide sequences generated during AV-N-AJ42 gene recombination that serves as clonotype marker (available as supplemental Table I). Based on the collected and analyzed data sets, we defined the following rules in CDR3α usage: AGAGGGG in CDR3α with 15 aa; AGAGGG in CDR3α with 14 aa; and AGGG in CDR3α with 12-aa residues. Although we generated and screened the VA cDNA libraries of different sizes for each individual (Fig. 4,A), this pattern was consistent between the studied subjects (Table I).

Table II.

The nontemplate-encoded Gly/Ala runs in the CDR3α expressed by influenza M158–66-specific CD8 T cellsa

a Influenza-specific M1 tetramer+VB19+ CD8 T cells express α-chains from 11 VA families with size-restricted CDR3α. Amino acid residues in CDR3α loops are shown in red and blue. Nontemplate-encoded Ala and Gly are shown in blue and are interlined. CD8 T cells were isolated from M158–66-specific culture using M1 tetramer and VB19 mAbs (donor A).

Table II.

The nontemplate-encoded Gly/Ala runs in the CDR3α expressed by influenza M158–66-specific CD8 T cellsa

a Influenza-specific M1 tetramer+VB19+ CD8 T cells express α-chains from 11 VA families with size-restricted CDR3α. Amino acid residues in CDR3α loops are shown in red and blue. Nontemplate-encoded Ala and Gly are shown in blue and are interlined. CD8 T cells were isolated from M158–66-specific culture using M1 tetramer and VB19 mAbs (donor A).

Close modal
Table I.

Poly-Gly/Ala runs in the entire CDR3α expressed by influenza M158–66-specific VB19+ CD8 T cellsa

a M158–66-specific clonotypes, from five HLA-A2 individuals, derived from different VA families share Gly/Ala amino acid runs in CDR3α of different sizes. Amino acid residues in CDR3α loops are shown in red. The Ala and Gly in CDR3α are underlined. Clonotype unique identifiers are labeled as ID. The total numbers of M158–66-specific VB19+ clonotypes within correspondent VA-cDNA libraries and their CDR3α nucleotide and deduced amino acid sequences are also available as supplemental Table I.

Table I.

Poly-Gly/Ala runs in the entire CDR3α expressed by influenza M158–66-specific VB19+ CD8 T cellsa

a M158–66-specific clonotypes, from five HLA-A2 individuals, derived from different VA families share Gly/Ala amino acid runs in CDR3α of different sizes. Amino acid residues in CDR3α loops are shown in red. The Ala and Gly in CDR3α are underlined. Clonotype unique identifiers are labeled as ID. The total numbers of M158–66-specific VB19+ clonotypes within correspondent VA-cDNA libraries and their CDR3α nucleotide and deduced amino acid sequences are also available as supplemental Table I.

Close modal

The presence of nontemplate poly-Gly/Ala runs in TCR α-chains expressed by flu-specific T cells could either reflect the CDR3α amino acid sequence distribution in naive T cells emerging from the thymus, or it could reflect a preferential selection of these sequences during flu-specific immune responses. To examine whether poly-Gly/Ala runs are a property of M158–66-specific memory, we examined AV27-N-AJ42 gene recombination in human CD4+CD8 and CD4CD8+ thymocytes. We reasoned that if poly-Gly/Ala is an intrinsic property of the long CDR3α, then this motif could be defined in CD4+CD8 (4SP) and CD4CD8+ (8SP) thymocytes. Therefore, thymic tissue was used for 4SP and 8SP thymocyte isolation, genomic DNA preparation, and PCR amplification, using VA27 and JA42 family-specific primers. The flow cytometry data and corresponding VA27-JA42 spectratypes are shown in Fig. 5. In addition to thymic spectratypes, we used spectratypes of the M158–66-specific culture and sorted M1 tetarmer+VB19+ T cells that served as the positive controls for CDR3α sizes.

FIGURE 5.

CDR3α size heterogeneity of the VA27-JA42 CD4CD8+ and CD4+CD8 thymocytes. A, Flow cytometry data of the FACS-sorted CD4CD8+ and CD4+CD8 thymocytes. B, VA24-JA42 spectratyping of bulk CD8 T cells from peptide-specific culture, M1 tetramer+VB19+ population from the cells line. 8SP and 4SP correspond to sorted CD4CD8+ and CD4+CD8 thymocytes, respectively. Left-side arrows and numbers indicate α TCR transcripts that encode 15, 14, and 12 aa in CDR3α. ctrl indicates PCR negative control. The CDR3α sizes are shown from C (CASS) to first F (FGxG).

FIGURE 5.

CDR3α size heterogeneity of the VA27-JA42 CD4CD8+ and CD4+CD8 thymocytes. A, Flow cytometry data of the FACS-sorted CD4CD8+ and CD4+CD8 thymocytes. B, VA24-JA42 spectratyping of bulk CD8 T cells from peptide-specific culture, M1 tetramer+VB19+ population from the cells line. 8SP and 4SP correspond to sorted CD4CD8+ and CD4+CD8 thymocytes, respectively. Left-side arrows and numbers indicate α TCR transcripts that encode 15, 14, and 12 aa in CDR3α. ctrl indicates PCR negative control. The CDR3α sizes are shown from C (CASS) to first F (FGxG).

Close modal

As shown in Fig. 5 B, the proportions of 4SP and 8SP thymocytes that have CDR3α composed of 12-aa residues were underrepresented within the VA27+JA42+ population, yet they were abundant in bulk epitope-specific culture and within M1 tetramer+VB19+ populations. To further examine the presence of poly-Gly/Ala runs in conjunction with CDR3α sizes, we cloned and sequenced 400 and 300 CDR3α plasmid subclones from the 8SP and 4SP thymocytes, respectively. Here, we defined 129 “in-frame” rearrangements for 8SP thymocytes and 89 “in-frame” rearrangements for 4SP thymocytes. This frequency was expected since two of three rearrangements generate nonproductive CDR3α. As a control, we also used VA27-JA42 subclones from bulk M158–66- specific culture (donor A, year 2004, 5-wk culture) and M1 tetramer+VB19+ sorted populations (donor A, year 2002, 4-wk culture). The α TCR repertoire profiles of the VA27-JA42+ clonotypes from the 8SP and 4SP thymocytes and cultured CD8 T cells are available as supplemental Table II.

Although 8SP thymocytes utilizing CDR3α of 14- and 15-aa residues were dominant based on spectratyping results (Fig. 5 B), more clonotype diversity was observed among cells using CDR3α of 12-aa residues (20%, 13 of 66 clonotypes) and 15-aa residues (31%, 21 of 66 clonotypes) (supplemental Table II, CD4CD8+ thymocytes). The similar weak association between CDR3α band intensity on spectratyping and clonotype diversity was seen for 4SP thymocytes (supplemental Table II, CD4+8 thymocytes). Only one dominant clonotype detected among 8SP thymocytes represented 11% (14 of 129 sequences) of the population and used short CDR3α (11 aa) created by bland AV27 and AJ42 gene ligation.

Since we were interested to examine whether TCR interaction with HLA-A2 would preferentially select cells based on CDR3α sizes with nontemplate-encoded Gly/Ala runs, we examined the occurrence of poly-Gly/Ala runs by plotting frequencies of these amino acids, for all clonotypes, as a function of the CDR3α sizes (Fig. 6). The Gly/Ala runs could be encoded if linking the AV27 gene (CAG) with the AJ42 gene segment (GGSQG…) occurs after deletion of one nucleotide from the 3′ end of the AV27 gene and seven nucleotides from the 5′ end of AJ42 gene. Therefore, we expected to observe Gly and Ala strings in a short CDR3α. However, we were interested whether the long (14–15-aa) CDR3α were enriched by nontemplate Gly/Ala. As shown in Fig. 6,A, the frequency of nontemplate Gly/Ala in 8SP thymocytes with 14–15 aa in CDR3α was below detection level, considering the number of identified clonotypes, similar to what was observed for 4SP (0–5%) clonotypes (Fig. 6,B). However, proportions of cells with nontemplate Gly and Ala were in the range of 40–60% (12 of 17 clonotypes) for M1 tetramer+VB19+ cells (Fig. 6,C) and 40–90% (10 of 26 clonotypes) for CD8 T cells that proliferated in the peptide-specific culture (Fig. 6 D). Therefore, we conclude that the increased frequency of Gly/Ala runs is associated with flu M158–66-driven selection rather than with V-J recombination and thymic selection.

FIGURE 6.

Frequencies of Gly, Ala, and Gly/Ala in CDR3α of the VA27-JA42 thymocytes. A, CD4CD8+ thymocytes, (B) CD4+CD8 thymocytes, (C) CD8 T cells from M158–66-specific culture (donor A, year 2004, week 3), (D) M1 tetramer+VB19+ CD8 T cells (donor A, year 2002, M158–66-specific culture, week 5). The values in the lower x-axis indicate the CDR3α sizes (aa). “All” corresponds to the total number of clonotypes defined within VA27-JA42 cDNA libraries. The numbers on the Y-axis indicate occurrences of only Gly, only Ala, Gly and Ala, and neither Gly nor Ala as a percentage of all nontemplate-encoded amino acid residues in CDR3α for clonotypes with identical CDR3α sizes. The total numbers of the VA27-JA42 clonotypes sharing CDR3a sizes are shown on the top of each bar. The data reflecting Gly, Ala, and Gly/Ala in the CDR3 have been extracted from the data sets available as the supplemental material (supplemental Table II (for A–C) and supplemental Table I (donor A) (for D)).

FIGURE 6.

Frequencies of Gly, Ala, and Gly/Ala in CDR3α of the VA27-JA42 thymocytes. A, CD4CD8+ thymocytes, (B) CD4+CD8 thymocytes, (C) CD8 T cells from M158–66-specific culture (donor A, year 2004, week 3), (D) M1 tetramer+VB19+ CD8 T cells (donor A, year 2002, M158–66-specific culture, week 5). The values in the lower x-axis indicate the CDR3α sizes (aa). “All” corresponds to the total number of clonotypes defined within VA27-JA42 cDNA libraries. The numbers on the Y-axis indicate occurrences of only Gly, only Ala, Gly and Ala, and neither Gly nor Ala as a percentage of all nontemplate-encoded amino acid residues in CDR3α for clonotypes with identical CDR3α sizes. The total numbers of the VA27-JA42 clonotypes sharing CDR3a sizes are shown on the top of each bar. The data reflecting Gly, Ala, and Gly/Ala in the CDR3 have been extracted from the data sets available as the supplemental material (supplemental Table II (for A–C) and supplemental Table I (donor A) (for D)).

Close modal

A detailed assessment of the TCR repertoires of Ag-specific T cells is a prerequisite for a better understanding of human antiviral immunity. Here we systematically examined the α TCR repertoires of memory CD8 T cells reactive against the influenza A viral epitope, M158–66, restricted by HLA-A2.1. The M158–66-specific, clonally diverse VB19 CD8 T cells expressed α-chains from several VA families with different CDR3 sizes. A unique feature of these α TCRs was the presence of poly-Gly/Ala runs in the CDR3, fitting to an AGA(Gn)GG-like amino acid motif. These nontemplate-encoded poly-Gly/Ala runs in the CDR3 of the M158–66-specific memory pool were significantly enriched over those in naive thymocytes, indicating that Gly/Ala runs provided a selective advantage in Ag-driven repertoire development in the periphery. These poly-Gly/Ala runs in the CDR3 of α- and β-chains might provide enhanced TCR flexibility during Ag recognition.

The mechanisms that shape T cell memory through α TCR selection have been difficult to delineate due to the technical restraints associated with the lack of VA-family specific mAbs and T cell ability to coexpress two α-chains (31, 33, 34). Nevertheless, our molecular cloning techniques demonstrate that the influenza A M158–66-specific T cell memory contains a number of additional features contributed by α TCR diversity. These TCR α-chains that paired with the VB19 β-chains were of 11 VA families with three remarkably different sizes in CDR3α (Fig. 4,B). Given that the M1-specific clonotypes from different VA families express different CDR1α and CDR2α (Table II), proper accommodation of different CDR1α and CDR2α to the M158–66-:HLA-A2 might occur if the CDR3α could undergo conformational adjustment. In this regard, enrichment of Gly and Ala might provide increased structural flexibility in CDR3α and satisfy this criterion.

It is commonly accepted that the fine specificity of epitope recognition is due to structural complementarity of CDR3α and CDR3β to MHC-presented immunogenic peptides under conditions where CDR1 and CDR2 orient the TCR α- and β-chains to MHC molecules. In contrast to Abs that usually have large surfaces with complementarity to their cognate Ags (35), only 21–34% of the αβ TCR’s surfaces are in direct contact with pMHC complexes (16, 36). Moreover, the contributions of CDR3α and CDR3β are relatively small, representing 21% and 24% on average of Vα and Vβ domains, respectively. These properties of TCR-pMHC interactions impose strict requirements on α- and β-chains. For example, side chains of amino acids located within the CDR3 must have optimized sizes and charges to interact with the foreign peptide, and CDR3 of α- and β-chains ought to have the similar sizes (25). However, we show examples where short CDR3α (12 aa) pair with one amino acid longer VB19-CDR3β (counting from C (CAS) to F (FGXG)), similar to crystallized αβ TCR expressed by M158–66-specific clone JM22 (37). The CD8 T cells from VA27 and VA8 families in five studied individuals mostly expressed these short CDR3a loops. In contrast, longer CDR3α sequences (14 and 15 aa) were found with VA families other than VA27 and VA8. These “non-VA27” VB19+ T cells share α-JA42 chains with VA27 T cells (Fig. 4,B), but express different CDR1 and CDR2 of their α-chains (Table III). Given that VB19 cells express rigid CDR3β fitting into the “IRSS-” or “IGS”-like motifs, a plausible explanation that structurally different Vα domains are used to recognize influenza epitope is that the CDR3α loops undergo significant conformation (38) associated with poly-Gly/Ala runs. We therefore suggest that the CDR3α bearing long poly-Gly/Ala strings allow CDR1α and CDR2α encoded by different VA families to be used during influenza Ag recognition, and we discuss the theoretical basis for this suggestion below.

Table III.

Alignment of 11 VA chains involved in M158–66:HLA-A2 recognitiona

a M158–66 epitope-specific CD8 T cells from eleven VA families express structurally different CDR1α and CDR2α based on amino acid composition. CDR1α, CDR2α and CDR3α (amino termini) are shown in bold.

Table III.

Alignment of 11 VA chains involved in M158–66:HLA-A2 recognitiona

a M158–66 epitope-specific CD8 T cells from eleven VA families express structurally different CDR1α and CDR2α based on amino acid composition. CDR1α, CDR2α and CDR3α (amino termini) are shown in bold.

Close modal

AJ42 gene-encoded products are not unique in the sense of containing two Gly runs, since 7 out of 51 AJ genes encode two, and even three, Gly. However, 59% (37 of 63) of the clonotypes with CDR3α with 15 aa belong to this particular JA42 family (Fig. 4,B). It seems that the combination of long CDR3α with poly-Gly/Ala runs provides flexibility for αβ TCR to bind to the M158–66:HLA-A2 epitope, since we defined only eight clonotypes from “non-VA27” families (namely, VA10, 8.6, VA34 and VA35) that expressed short CDR3α of 12 aa (Fig. 4 B). Gly is a unique amino acid because it lacks a side chain, and Ala contains only a methyl group as a side chain. It has been shown that proteins whose functions depend on adjustment to ligands often contain flexible loops. Usually Gly is located within these loops, providing flexibility in protein-protein or protein-ligand interactions. For example, poly-Gly strings have been found in the HIV protease flap region, in β1,4-galactosyltransferase-I, fructose-1,6-bisphosphate aldolase, and other enzymes (39, 40, 41). TCR contact with the pMHC molecule also follows the same rule. Thermodynamic studies of three TCR-pMHC binding, including αβ TCR from M158–66-specific clone JM22, revealed that this process correlates with considerable conformational adjustment in CDR3α and CDR3β (42, 43). For instance, Reiser and coworkers reported that KB5-C20 (TCR specific to pKB1/H-2Kb) exhibits large conformational alteration in the CDR3β (six amino acids longer than CDR3α) for proper accommodation to pMHC (15). Recently, the same group reported that similar structural flexibility might be observed in CDR3α (BM3.3 specific to two peptides with low sequence similarity presented by H-2Kb) (13). Based on these studies, the authors concluded that αβ TCR propensity to modify its complementarity surface, mostly in the CDR3, might be the origin of αβ TCR intrinsic ability to interact with the different epitopes. In line with these studies is the observation of structural flexibility of the αβ TCRs expressed by human T cell clones reactive against Tax11–19 peptide (from HTLV) presented by HLA-A2.1 (44, 45). Remarkably, these clones expressed β TCRs (VB13.1) that contained a PGxG motif in the CDR3β and efficiently recognized the original epitope and its variants. Another proof outlining the importance of TCR structural flexibility in epitope recognition comes from the crystallization of the αβ TCRS expressed by clone LC13 specific to EBNA-3339–347 peptide presented by HLA-B8. In this case, AlaGlyGly runs were contained in the CDR3β (46).

The occurrence of poly-Gly runs in β TCRs with a long CDR3 is attributed to the D region where VDJ gene transcription in three “open-reading-frames” would encode multiple Gly. This rule, however, cannot be applied to α TCRs lacking D-encoded regions. The existence of VB19 clones specific to flu-M158–66 that utilize α TCRs from different VA families provides an interesting example of epitope recognition where germline-encoded segments of α-chains (i.e., SQG from AJA42 gene) contact M158–66, while segments created by AV/AJ42 recombination are positioned outside M158–66:HLA-A2 and could be flexible due to Gly/Ala enrichment (37, 42). A recent study of the αβ TCR (from clone JM22 specific to M158–66-epitope) before and after binding to M158–66:HLA-A2 revealed that the CDR3α loop swiveled and made an ∼5 Å outward shift (37, 42). Note that the CDR3α loop from JM22 contains only 12 aa. Therefore, we are confident that the CDR3α with 14 and 15 aa defined in our study might have considerably more rotation and movement during M158–66:HLA-A2 binding and allow the CDR1α and CDR2α from different VA families to interact with HLA-A2 α1 helix.

A less explored field in human immunology is the analysis of the molecular nature of the preimmune α TCR repertoire. In our study, we could not exclude the possibility that poly-Gly/Ala runs might be a result of preferential AV27/AJ42 recombination where long CDR3α might have increased frequencies of Gly and Ala. If this were the case, we would have expected to see increased observations of Gly and Ala in CD4CD8+ and CD4+CD8 thymocytes regardless of class I and II HLA restrictions. Importantly, we examined the transcriptional profiles of α TCRs where VA27/JA42 transcripts might encode functional (restricted by HLA-A2.1) and nonfunctional TCR α-chains. Following extensive sequencing analysis of AV27/AJ42 gene recombination and considering CDR3α sizes, we concluded that Gly and Ala have similar frequencies with other amino acids encoded by nontemplate segments of the VA27/JA42 rearranged genes (Fig. 6 and supplemental Table II). Although two Gly are derived from the AJ42 gene, as was expected since we examined VA27/JA42 transcripts, the nontemplate segments of long CDR3α (i.e., 14 and 15 aa) were not Gly- and Ala-enriched. Therefore, we conclude that selection for poly-Gly/Ala runs was driven in response to M158–66 epitope during influenza exposure rather than by a gene recombination.

The flexibility of the αβ TCR structure might be an important factor in the fate of memory T cells. In the case of influenza M158–66-specific cells, the poly-Gly/Ala runs do not contact M158–66 or HLA-A2 directly, based on the crystallization of the representative M158–66-specific JM22 clonal αβ TCR and its variants (37, 42). Although the recognition M158–66:HLA-A2 is a function of VB19 β-chain (∼70% of interactive interface), the α TCRs with a highly flexible CDR3 might be used to recognize structurally different Ags, thus contributing to the pattern of T cell cross-reactivity, which we have observed in “heterologous immunity” (47). If this is the case, influenza-specific VB19 T cells with IRSS in CDR3β might engage CDR1α and CDR2α during recognition of other p:HLA-A2, perhaps further enhancing the immunodominance of VB19 T cell clones.

Here we propose a three-step model explaining TCR interaction with the M158–66/HLA-A2.1 complex (Fig. 7). In the first step, CDR1β and CDR2β (β-VB19) contact the α2 helix of HLA-A2.1, pivoting the CDR3β to the peptide wherein R98 anchors the β-chains to HLA-A2 and S99 interacts with the M158–66 peptide. In the second step, the SQG (AJ42 gene encoded) anchors the CDR3α loop to Gly61 (M158–66), and the long CDR3α (poly-Gly/Ala) undergoes conformational change. Since AGA(G/A)G in CDR3α imposes minimal energy requirement to change shape, this leads to the third step, where engagement of different CDR1,2α (from any of the VA domain) is sufficient for final TCR:M158–66/HLA-A2.1 docking. The key element of this model is a long poly-Gly/Ala moiety, which allows CDR3α to be extremely flexible and adjust different TCR Vα domains to the same pMHC complex. If long CDR3α and/or CDR3β are more flexible and accommodate αβ TCRs to different pMHC shapes and charges, then cross-reactivity against different Ags might be a major factor in memory formation. Of note, in our studies we also defined, based on tetramer binding, “non-VB19” cells that were able to recognize the M158–66/HLA-A2 epitope. Remarkably, they also expressed long (15-aa) CDR3β with a GXGG motif (Y. N. Naumov, unpublished).

FIGURE 7.

Proposed model of poly-Gly/Ala insertion in CDR3α loop. The HLA-A2.1 molecule is shown in gray. M158–66 peptide is shown in green. VB19 β-chain is in blue, while orange indicates the VA27 α-chain. Mesh in red corresponds CDR3α where Ala91Gly92Ala93Gly94. Arrows indicate insertion of Gly or any other amino acid residue. The image was generated using PDB file under accession code 1OGA and MacPyMol software (DeLano Scientific).

FIGURE 7.

Proposed model of poly-Gly/Ala insertion in CDR3α loop. The HLA-A2.1 molecule is shown in gray. M158–66 peptide is shown in green. VB19 β-chain is in blue, while orange indicates the VA27 α-chain. Mesh in red corresponds CDR3α where Ala91Gly92Ala93Gly94. Arrows indicate insertion of Gly or any other amino acid residue. The image was generated using PDB file under accession code 1OGA and MacPyMol software (DeLano Scientific).

Close modal

The early studies of the cytotoxic CD8 T cell lines and clones reactive against M157–68-expressing targets cells revealed that M157–68 peptide modifications in positions 58–60 were well tolerated, while modifications in positions 61–65 could abrogate CTL response. In the last case, however, diminished cytotoxicity was not absolute and depended on amino acid substitutions. Interestingly, the T cell clones derived presumably from VB19 family have different patterns of epitope dependency in the CTL assay (10). Our own study demonstrated that small populations of the VB19 T cells are able to proliferate and to produce IFN-γ in response to influenza M158–66 and EBV-BMLF1280–288 epitopes (30). Although we did not yet define the structure of the cross-reactive αβ TCRs, these observations suggest that conformational flexibility of αβ TCRs and clonal diversity of reactive T cells might be the best way to cope with different Ags.

In conclusion, we suggest that the immune response evolves in a way where it engages T cells with structurally different αβ TCRs specific to cognate Ags leading to an intrinsic capacity of these T cells to interact with different pMHC shapes and charges. It is tempting to speculate that the presence of multiple memory CD8 T cell clones of diverse specificities due to adjustable Ag receptors is the best way to optimize immune memory to ever-changing antigenic environment.

We thank Dr. Jack Gorski and Dr. Martin Hessner for scientific discussion, and K. Bateman for editorial assistance with the manuscript.

The authors have no financial conflicts of interest.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

1

This work was supported by National Institutes of Health Grants U19-AI057319 (to Y.N.N.), U19-AI062627 (to Y.N.N. and E.N.N.) and AI45751 (to L.K.S.). The contents of this publication are solely the responsibility of the authors and do not represent the official view of the National Institutes of Health.

3

Abbreviations used in this paper: pMHC, immunogenic peptides loaded into class I MHC molecules; 4SP, CD4+CD8; 8SP, CD4CD8+.

4

The online version of this article contains supplemental material.

1
Garcia, K. C., M. Degano, R. L. Stanfield, A. Brunmark, M. R. Jackson, P. A. Peterson, L. Teyton, I. A. Wilson.
1996
. An αβ T cell receptor structure at 2.5 Å and its orientation in the TCR-MHC complex.
Science
274
:
209
-219.
2
Grakoui, A., S. K. Bromley, C. Sumen, M. M. Davis, A. S. Shaw, P. M. Allen, M. L. Dustin.
1999
. The immunological synapse: a molecular machine controlling T cell activation.
Science
285
:
221
-227.
3
Huppa, J. B., M. M. Davis.
2003
. T-cell-antigen recognition and the immunological synapse.
Nat. Rev. Immunol.
3
:
973
-983.
4
Lee, K. H., A. R. Dinner, C. Tu, G. Campi, S. Raychaudhuri, R. Varma, T. N. Sims, W. R. Burack, H. Wu, J. Wang, et al
2003
. The immunological synapse balances T cell receptor signaling and degradation.
Science
302
:
1218
-1222.
5
Lin, M. Y., R. M. Welsh.
1998
. Stability and diversity of T cell receptor repertoire usage during lymphocytic choriomeningitis virus infection of mice.
J. Exp. Med.
188
:
1993
-2005.
6
Maryanski, J. L., C. V. Jongeneel, P. Bucher, J. L. Casanova, P. R. Walker.
1996
. Single-cell PCR analysis of TCR repertoires selected by antigen in vivo: a high magnitude CD8 response is comprised of very few clones.
Immunity
4
:
47
-55.
7
Pewe, L. L., J. M. Netland, S. B. Heard, S. Perlman.
2004
. Very diverse CD8 T cell clonotypic responses after virus infections.
J. Immunol.
172
:
3151
-3156.
8
Argaet, V. P., C. W. Schmidt, S. R. Burrows, S. L. Silins, M. G. Kurilla, D. L. Doolan, A. Suhrbier, D. J. Moss, E. Kieff, T. B. Suclley, et al
1994
. Dominant selection of an invariant T cell antigen receptor in response to persistent infection by Epstein-Barr virus.
J. Exp. Med.
180
:
2335
-2340.
9
Burrows, S. R., S. L. Silins, D. J. Moss, R. Khanna, I. S. Misko, V. P. Argaet.
1995
. T cell receptor repertoire for a viral epitope in humans is diversified by tolerance to a background major histocompatibility complex antigen.
J. Exp. Med.
182
:
1703
-1715.
10
Gotch, F., A. McMichael, J. Rothbard.
1988
. Recognition of influenza A matrix protein by HLA-A2-restricted cytotoxic T lymphocytes: use of analogues to orientate the matrix peptide in the HLA-A2 binding site.
J. Exp. Med.
168
:
2045
-2057.
11
Moss, P. A., R. J. Moots, W. M. Rosenberg, S. J. Rowland-Jones, H. C. Bodmer, A. J. McMichael, J. I. Bell.
1991
. Extensive conservation of α and β chains of the human T-cell antigen receptor recognizing HLA-A2 and influenza A matrix peptide.
Proc. Natl. Acad. Sci. USA
88
:
8987
-8990.
12
Ding, Y. H., B. M. Baker, D. N. Garboczi, W. E. Biddison, D. C. Wiley.
1999
. Four A6-TCR/peptide/HLA-A2 structures that generate very different T cell signals are nearly identical.
Immunity
11
:
45
-56.
13
Reiser, J. B., C. Darnault, C. Gregoire, T. Mosser, G. Mazza, A. Kearney, P. A. Van Der Merwe, J. C. Fontecilla-Camps, D. Housset, B. Malissen.
2003
. CDR3 loop flexibility contributes to the degeneracy of TCR recognition.
Nat. Immunol.
4
:
241
-247.
14
Reiser, J. B., C. Darnault, A. Guimezanes, C. Gregoire, T. Mosser, A. M. Schmitt-Verhulst, J. C. Fontecilla-Camps, B. Malissen, D. Housset, G. Mazza.
2000
. Crystal structure of a T cell receptor bound to an allogeneic MHC molecule.
Nat. Immunol.
1
:
291
-297.
15
Reiser, J. B., C. Gregoire, C. Darnault, T. Mosser, A. Guimezanes, A. M. Schmitt-Verhulst, J. C. Fontecilla-Camps, G. Mazza, B. Malissen, D. Housset.
2002
. A T cell receptor CDR3β loop undergoes conformational changes of unprecedented magnitude upon binding to a peptide/MHC class I complex.
Immunity
16
:
345
-354.
16
Rudolph, M. G., I. A. Wilson.
2002
. The specificity of TCR/pMHC interaction.
Curr. Opin. Immunol.
14
:
52
-65.
17
Lofgren, E., N. H. Fefferman, Y. N. Naumov, J. Gorski, E. N. Naumova.
2007
. Influenza seasonality: underlying causes and modeling theories.
J. Virol.
81
:
5429
-5436.
18
Gianfrani, C., C. Oseroff, J. Sidney, R. W. Chesnut, A. Sette.
2000
. Human memory CTL response specific for influenza A virus is broad and multispecific.
Hum. Immunol.
61
:
438
-452.
19
Lawson, T. M., S. Man, E. C. Wang, S. Williams, N. Amos, G. M. Gillespie, P. A. Moss, L. K. Borysiewicz.
2001
. Functional differences between influenza A-specific cytotoxic T lymphocyte clones expressing dominant and subdominant TCR.
Int. Immunol.
13
:
1383
-1390.
20
Lehner, P. J., E. C. Wang, P. A. Moss, S. Williams, K. Platt, S. M. Friedman, J. I. Bell, L. K. Borysiewicz.
1995
. Human HLA-A0201-restricted cytotoxic T lymphocyte recognition of influenza A is dominated by T cells bearing the Vβ17 gene segment.
J. Exp. Med.
181
:
79
-91.
21
Lawson, T. M., S. Man, S. Williams, A. C. Boon, M. Zambon, L. K. Borysiewicz.
2001
. Influenza A antigen exposure selects dominant Vβ17+ TCR in human CD8+ cytotoxic T cell responses.
Int. Immunol.
13
:
1373
-1381.
22
Naumov, Y. N., K. T. Hogan, E. N. Naumova, J. T. Pagel, J. Gorski.
1998
. A class I MHC-restricted recall response to a viral peptide is highly polyclonal despite stringent CDR3 selection: implications for establishing memory T cell repertoires in “real-world” conditions.
J. Immunol.
160
:
2842
-2852.
23
Naumov, Y. N., E. N. Naumova, S. C. Clute, L. B. Watkin, K. Kota, J. Gorski, L. K. Selin.
2006
. Complex T cell memory repertoires participate in recall responses at extremes of antigenic load.
J. Immunol.
177
:
2006
-2014.
24
Naumov, Y. N., E. N. Naumova, K. T. Hogan, L. K. Selin, J. Gorski.
2003
. A fractal clonotype distribution in the CD8+ memory T cell repertoire could optimize potential for immune responses.
J. Immunol.
170
:
3994
-4001.
25
Moss, P. A., J. I. Bell.
1996
. Comparative sequence analysis of the human T cell receptor TCRA and TCRB CDR3 regions.
Hum. Immunol.
48
:
32
-38.
26
Yassai, M., E. N. Naumova, J. Gorski.
1997
. Generation of TCR spectratypes by multiplex PCR for T cell repertoire analysis. J. R. Oksenberg, ed.
The Antigen T Cell Receptor: Selected Protocols and Applications
327
-372. Landes Company and Chapman & Hall, Austin, TX.
27
Miller, S. A., D. D. Dykes, H. F. Polesky.
1988
. A simple salting out procedure for extracting DNA from human nucleated cells.
Nucleic Acids Res.
16
:
1215
28
Naumov, Y. N., E. N. Naumova, J. Gorski.
1996
. CD4+ and CD8+ circulating α/β T-cell repertoires are equally complex and are characterized by different levels of steady-state TCR expression.
Hum. Immunol.
48
:
52
-62.
29
Han, M., L. Harrison, P. Kehn, K. Stevenson, J. Currier, M. A. Robinson.
1999
. Invariant or highly conserved TCR α are expressed on double-negative (CD3+CD4CD8) and CD8+ T cells.
J. Immunol.
163
:
301
-311.
30
Clute, S. C., L. B. Watkin, M. Cornberg, Y. N. Naumov, J. L. Sullivan, K. Luzuriaga, R. M. Welsh, L. K. Selin.
2005
. Cross-reactive influenza virus-specific CD8+ T cells contribute to lymphoproliferation in Epstein-Barr virus-associated infectious mononucleosis.
J. Clin. Invest.
115
:
3602
-3612.
31
Malissen, M., J. Trucy, E. Jouvin-Marche, P. A. Cazenave, R. Scollay, B. Malissen.
1992
. Regulation of TCR α and β gene allelic exclusion during T-cell development.
Immunol. Today
13
:
315
-322.
32
Mallisen, B., M. Mallisen.
1995
. Allelic exclusion of T cell antigen receptor genes. J. I. Bell, and M. J. Owen, and E. Simpson, eds.
T Cell Receptors
352
-365. Oxford University Press, Oxford.
33
Padovan, E., G. Casorati, P. Dellabona, S. Meyer, M. Brockhaus, A. Lanzavecchia.
1993
. Expression of two T cell receptor α chains: dual receptor T cells.
Science
262
:
422
-424.
34
He, X., C. A. Janeway, Jr, M. Levine, E. Robinson, P. Preston-Hurlburt, C. Viret, K. Bottomly.
2002
. Dual receptor T cells extend the immune repertoire for foreign antigens.
Nat. Immunol.
3
:
127
-134.
35
Wilson, I. A., R. L. Stanfield.
1994
. Antibody-antigen interactions: new structures and new conformational changes.
Curr. Opin. Struct. Biol.
4
:
857
-867.
36
Rudolph, M. G., R. L. Stanfield, I. A. Wilson.
2006
. How TCRs bind MHCs, peptides, and coreceptors.
Annu. Rev. Immunol.
24
:
419
-466.
37
Stewart-Jones, G. B., A. J. McMichael, J. I. Bell, D. I. Stuart, E. Y. Jones.
2003
. A structural basis for immunodominant human T cell receptor recognition.
Nat. Immunol.
4
:
657
-663.
38
Wu, L. C., D. S. Tuot, D. S. Lyons, K. C. Garcia, M. M. Davis.
2002
. Two-step binding mechanism for T-cell receptor recognition of peptide MHC.
Nature
418
:
552
-556.
39
Gunasekaran, K., B. Ma, B. Ramakrishnan, P. K. Qasba, R. Nussinov.
2003
. Interdependence of backbone flexibility, residue conservation, and enzyme function: a case study on β1,4-galactosyltransferase-I.
Biochemistry
42
:
3674
-3687.
40
Nicholson, L. K., T. Yamazaki, D. A. Torchia, S. Grzesiek, A. Bax, S. J. Stahl, J. D. Kaufman, P. T. Wingfield, P. Y. Lam, P. K. Jadhav, et al
1995
. Flexibility and function in HIV-1 protease.
Nat. Struct. Biol.
2
:
274
-280.
41
Zgiby, S., A. R. Plater, M. A. Bates, G. J. Thomson, A. Berry.
2002
. A functional role for a flexible loop containing Glu182 in the class II fructose-1,6-bisphosphate aldolase from Escherichia coli.
J. Mol. Biol.
315
:
131
-140.
42
Ishizuka, J., G. B. Stewart-Jones, A. van der Merwe, J. I. Bell, A. J. McMichael, E. Y. Jones.
2008
. The structural dynamics and energetics of an immunodominant T cell receptor are programmed by its Vβ domain.
Immunity
28
:
171
-182.
43
Willcox, B. E., G. F. Gao, J. R. Wyer, J. E. Ladbury, J. I. Bell, B. K. Jakobsen, P. A. van der Merwe.
1999
. TCR binding to peptide-MHC stabilizes a flexible recognition interface.
Immunity
10
:
357
-365.
44
Bourcier, K. D., D. G. Lim, Y. H. Ding, K. J. Smith, K. Wucherpfennig, D. A. Hafler.
2001
. Conserved CDR3 regions in T-cell receptor (TCR) CD8+ T cells that recognize the Tax11–19/HLA-A*0201 complex in a subject infected with human T-cell leukemia virus type 1: relationship of T-cell fine specificity and major histocompatibility complex/peptide/TCR crystal structure.
J. Virol.
75
:
9836
-9843.
45
Hausmann, S., W. E. Biddison, K. J. Smith, Y. H. Ding, D. N. Garboczi, U. Utz, D. C. Wiley, K. W. Wucherpfennig.
1999
. Peptide recognition by two HLA-A2/Tax11–19-specific T cell clones in relationship to their MHC/peptide/TCR crystal structures.
J. Immunol.
162
:
5389
-5397.
46
Kjer-Nielsen, L., C. S. Clements, A. W. Purcell, A. G. Brooks, J. C. Whisstock, S. R. Burrows, J. McCluskey, J. Rossjohn.
2003
. A structural basis for the selection of dominant αβ T cell receptors in antiviral immunity.
Immunity
18
:
53
-64.
47
Selin, L. K., S. R. Nahill, R. M. Welsh.
1994
. Cross-reactivities in memory cytotoxic T lymphocyte recognition of heterologous viruses.
J. Exp. Med.
179
:
1933
-1943.