When I started postdoctoral work in the laboratory of the late Geoffrey Haughton at the University of North Carolina in Chapel Hill, I began to pursue a fascination with how lymphocytes interact and collaborate in immune regulation that has lasted for decades. I was especially interested in learning about how T cells induce B cells to produce high-affinity, isotype-switched Ab responses, leading to both Ab production and the development of humoral memory. At that time, the most popular paradigm indicated that following Ag binding, the B cell presents processed peptides bound to class II MHC molecules to cognate-activated T cells. The T cell secretes lymphokines, which are both necessary and sufficient to produce a full humoral response. However, Geoff convinced me of his belief that contact-dependent T–B cell interactions were also key to B cell activation. Influenced by new and elegant work on T–B cell contact (1), we performed studies showing that fixed, activated T cells could synergize with Ag receptor signals to drive B cell activation in a contact-dependent manner (2). Subsequent work I performed with Jeffrey Frelinger revealed that B cell class II MHC molecules can deliver one of these T cell–mediated signals (3, 4). As a new Assistant Professor at the University of Iowa, my laboratory further characterized class II–mediated signaling pathways (5, 68), and many other laboratories also made important contributions to this topic (reviewed in Ref. 9).

In the early 1990s, my attention was caught by a newly revealed major player in T–B cell interactions— CD40. A member of the TNFR superfamily, CD40 was revealed as the key signal missing in the human immunodeficiency disease X-linked hyper IgM syndrome (reviewed in Ref. 10), and mouse models also emphasized its importance in both humoral and cellular immunity, as well as various immune-mediated diseases (1115). However, although CD40 clearly delivers many potent signals to immune cells, its cytoplasmic (CY) domain doesn’t contain any of the well studied tyrosine kinase–binding motifs or domains that have been a major focus of studies of lymphocyte Ag receptors, by far the most well studied of immune cell receptors. Our laboratory was experienced in structure–function analysis, so we thus produced a group of CD40 molecules with CY mutations, stably expressed them in B cell lines, and examined the structural requirements for various upstream signals and B cell effector functions. We discovered multiple signaling determinants, controlling overlapping but distinct CD40 signals and functions (1618). During this time, a number of groups demonstrated that the CD40 CY domain can bind cytoplasmic signaling molecules of the TNFR-associated factor (TRAF) family (1922), and in fact the signaling determinants that we had identified corresponded well to the location of binding sites for various TRAFs. This led us on yet another journey, to study the roles of TRAF molecules in immune regulation.

A critical insight was provided to us by our parallel studies of a CD40-mimicking protein encoded by the EBV, called latent membrane protein 1 (LMP1). While LMP1 strikingly replicates CD40 functions in B cells (23), we and others found that it does so in a manner that delivers abnormally amplified and sustained signals, consistent with the implication of LMP1 in the pathogenesis of EBV-associated B cell malignancies, as well as exacerbation of certain autoimmune conditions (reviewed in Refs. 2426). Although the CY domains of CD40 and LMP1 have little sequence homology, binding studies with exogenously overexpressed molecules in epithelial cells or fibroblasts showed that LMP1, like CD40, can bind TRAFs 1, 2, 3, 5 and 6 (27, 28). It was thus logical to assume that because LMP1 is a CD40 mimic, the two molecules use these TRAFs in the same manner. TRAFs 1, 2, 3, and 5 share an overlapping binding motif in CD40, and there is a similar although distinct motif in LMP1. Thus, discerning the specific roles for individual TRAF family members in signaling through receptors that have this motif was challenging. Overexpressing any of these TRAFs will inevitably alter the binding of the other TRAFs sharing the motif, and mutating the binding site will similarly affect binding of multiple TRAF family members. Thus, drawing clear conclusions from such approaches was problematic. Mice made completely deficient in TRAFs 2, 3, or 6 have an embryonic or neonatal lethality (2931). Thus, to begin to dissect the roles of individual TRAF members for specific receptors, we developed a novel method for complete and specific removal of one or multiple TRAFs from B cell lines, using in vitro gene targeting by homologous recombination (32). This allowed us, for the first time, to directly compare CD40 versus LMP1 requirements for specific TRAFs in B cell activation. To our considerable surprise, we subsequently found that LMP1 utilizes each of the TRAFs in a manner quite distinct from the ways these same TRAFs are used by CD40 (3338).

Perhaps most striking was the distinct way in which TRAF3 impacts CD40 versus LMP1 signaling to B cells. While TRAF3 serves as a negative regulator of CD40 signals, possibly via competition with TRAF2 (39, 40), we discovered that LMP1 instead utilizes TRAF3 as a positive mediator (37, 41). It was thus now clear that TRAFs serve highly receptor-specific roles in immune regulation. To determine if TRAF3 also has cell type–specific functions, we circumvented the early lethality of TRAF3−/− mice by producing a conditionally deleted, TRAF3flox/flox strain. We first bred these mice to a CD19Cre/+ strain (42), to produce a mouse lacking TRAF3 specifically in all CD19+ B cells. This new mouse revealed another striking finding that could not have been discerned in cell lines—that TRAF3 in B cells plays a critical role in restraining B cell survival. B-TRAF3−/− mice display highly increased B cell numbers, resulting in enlarged spleens and lymph nodes, as well as spontaneous germinal centers, elevated autoantibodies, immune complex deposition, and B cell infiltration of various organs (43), a phenotype reproduced in a similar mouse made by the Brink laboratory (44). This phenotype does not involve enhanced B cell proliferation, but results from enhanced BAFF-independent survival, as well as increased response to innate immune signals (43, 45). While this abnormal survival correlates with increased basal noncanonical NF-kB2 signaling, TRAF3−/− T cells and dendritic cells also display constitutive NF-kB2 activation, without any increase in cell survival (45, 46). A current laboratory focus is thus a better understanding of precisely how TRAF3 regulates B cell–specific survival.

Breeding the TRAF3flox/flox mouse to a CD4-Cre strain produced a mouse lacking TRAF3 in all mature T cells. The phenotype of this mouse clearly reveals the strongly cell-type specific roles of TRAF3. T-TRAF3−/− mice have normal numbers of immune cells, including CD4 and CD8 conventional T cells, but highly defective T-dependent humoral responses, and marked impairment in both CD4 and CD8 T cell responses to infection with the intracellular pathogen, L. monocytogenes (46). We initially assumed these functional defects arose from defective signaling via TRAF3-binding T cell costimulatory receptors of the TNFR superfamily, such as OX40, 4-1BB, CD27, and CD30. We were thus surprised to discover that in vitro responses to engagement of the TCR complex are markedly defective in the absence of TRAF3, and that following TCR engagement, TRAF3 associates with the TCR complex (46). Activation of multiple kinases and adaptor proteins in early TCR signaling is present, but reduced by ≥50% in TRAF3−/− T cells (46). Although this reduced TCR signal strength is apparently adequate for production of normal numbers of conventional T cells, we recently found that invariant NKT cells (iNKT) are greatly reduced (≥10-fold) in T-TRAF3−/− mice. This results from a block between stages 2 and 3 of iNKT development, is a cell-intrinsic defect, and can be rescued either by reintroduction of TRAF3 or the transcriptional regulator T-bet (47). Current studies focus upon the specific mechanisms by which TRAF3 modulates the quality and functions of the TCR complex.

Thus, our studies and those of many others have revealed that TRAF molecules serve both different receptors and distinct cell types in diverse and highly context-dependent ways, an important principle to consider in designing and interpreting experiments involving this fascinating family of adapter proteins. My own winding path through the forest of lymphocyte activation has impressed upon me that the most interesting and important findings often result from overturned predictions. I have been tremendously fortunate to pursue the life of a scientist, in the company of excellent and talented mentors, colleagues, and trainees, and look forward to learning what new results await around the next bend in the road.

Abbreviations used in this article:

CY

cytoplasmic

iNKT

invariant NKT cell

LMP1

latent membrane protein 1

TRAF

TNFR-associated factor.

1
Lanzavecchia
A.
1985
.
Antigen-specific interaction between T and B cells
.
Nature
314
:
537
539
.
2
Bishop
G. A.
,
Haughton
G.
.
1986
.
Induced differentiation of a transformed clone of Ly-1+ B cells by clonal T cells and antigen
.
Proc. Natl. Acad. Sci. USA
83
:
7410
7414
.
3
Bishop
G. A.
,
Frelinger
J. A.
.
1989
.
Haplotype-specific differences in signaling by transfected class II molecules to a Ly-1+ B-cell clone
.
Proc. Natl. Acad. Sci. USA
86
:
5933
5937
.
4
Bishop
G. A.
,
McMillan
M. S.
,
Haughton
G.
,
Frelinger
J. A.
.
1988
.
Signaling to a B-cell clone by Ek, but not Ak, does not reflect alteration of Ak genes
.
Immunogenetics
28
:
184
192
.
5
Bishop
G. A.
1991
.
Requirements of class II-mediated B cell differentiation for class II cross-linking and cyclic AMP
.
J. Immunol.
147
:
1107
1114
.
6
Harton
J. A.
,
Bishop
G. A.
.
1993
.
Length and sequence requirements of the cytoplasmic domain of the A β molecule for class II-mediated B cell signaling
.
J. Immunol.
151
:
5282
5289
.
7
Harton
J. A.
,
Litaker
W.
,
Frelinger
J. A.
,
Bishop
G. A.
.
1991
.
Structure function analysis of the H-2 Abp gene
.
Immunogenetics
34
:
358
365
.
8
Harton
J. A.
,
Van Hagen
A. E.
,
Bishop
G. A.
.
1995
.
The cytoplasmic and transmembrane domains of MHC class II β chains deliver distinct signals required for MHC class II-mediated B cell activation
.
Immunity
3
:
349
358
.
9
Scholl
P. R.
,
Geha
R. S.
.
1994
.
MHC class II signaling in B-cell activation
.
Immunol. Today
15
:
418
422
.
10
Callard
R. E.
,
Armitage
R. J.
,
Fanslow
W. C.
,
Spriggs
M. K.
.
1993
.
CD40 ligand and its role in X-linked hyper-IgM syndrome
.
Immunol. Today
14
:
559
564
.
11
Banchereau
J.
,
Bazan
F.
,
Blanchard
D.
,
Brière
F.
,
Galizzi
J. P.
,
van Kooten
C.
,
Liu
Y. J.
,
Rousset
F.
,
Saeland
S.
.
1994
.
The CD40 antigen and its ligand
.
Annu. Rev. Immunol.
12
:
881
922
.
12
Laman
J. D.
,
Claassen
E.
,
Noelle
R. J.
.
1996
.
Functions of CD40 and its ligand, gp39 (CD40L)
.
Crit. Rev. Immunol.
16
:
59
108
.
13
Noelle
R. J.
1996
.
CD40 and its ligand in host defense
.
Immunity
4
:
415
419
.
14
Stout
R. D.
,
Suttles
J.
.
1996
.
The many roles of CD40 in cell-mediated inflammatory responses
.
Immunol. Today
17
:
487
492
.
15
Van Kooten
C.
,
Banchereau
J.
.
1996
.
CD40-CD40 ligand: a multifunctional receptor-ligand pair
.
Adv. Immunol.
61
:
1
77
.
16
Baccam
M.
,
Bishop
G. A.
.
1999
.
Membrane-bound CD154, but not anti-CD40 mAbs, induces NF-κB independent B cell IL-6 production
.
Eur. J. Immunol.
29
:
3855
3866
.
17
Hostager
B. S.
,
Hsing
Y.
,
Harms
D. E.
,
Bishop
G. A.
.
1996
.
Different CD40-mediated signaling events require distinct CD40 structural features
.
J. Immunol.
157
:
1047
1053
.
18
Hsing
Y.
,
Hostager
B. S.
,
Bishop
G. A.
.
1997
.
Characterization of CD40 signaling determinants regulating nuclear factor-κ B activation in B lymphocytes
.
J. Immunol.
159
:
4898
4906
.
19
Cheng
G.
,
Cleary
A. M.
,
Ye
Z. S.
,
Hong
D. I.
,
Lederman
S.
,
Baltimore
D.
.
1995
.
Involvement of CRAF1, a relative of TRAF, in CD40 signaling
.
Science
267
:
1494
1498
.
20
Ishida
T.
,
Mizushima
S.
,
Azuma
S.
,
Kobayashi
N.
,
Tojo
T.
,
Suzuki
K.
,
Aizawa
S.
,
Watanabe
T.
,
Mosialos
G.
,
Kieff
E.
, et al
.
1996
.
Identification of TRAF6, a novel TRAF protein that mediates signaling from an amino-terminal domain of the CD40 cytoplasmic region
.
J. Biol. Chem.
271
:
28745
28748
.
21
Ishida
T.
,
Tojo
T.
,
Aoki
T.
,
Kobayashi
N.
,
Ohishi
T.
,
Watanabe
T.
,
Yamamoto
T.
,
Inoue
J.-I.
.
1996
.
TRAF5, a novel TNF-R-associated factor family protein, mediates CD40 signaling
.
Proc. Natl. Acad. Sci. USA
93
:
9437
9442
.
22
Rothe
M.
,
Sarma
V.
,
Dixit
V. M.
,
Goeddel
D. V.
.
1995
.
TRAF2-mediated activation of NF-κ B by TNF receptor 2 and CD40
.
Science
269
:
1424
1427
.
23
Busch
L. K.
,
Bishop
G. A.
.
1999
.
The EBV transforming protein, LMP1, mimics and cooperates with CD40 signaling in B lymphocytes
.
J. Immunol.
162
:
2555
2561
.
24
Graham
J. P.
,
Arcipowski
K. M.
,
Bishop
G. A.
.
2010
.
Differential B lymphocyte regulation by CD40 and its viral mimic, LMP1
.
Immunol. Rev.
237
:
226
248
.
25
Lyons
S. F.
,
Liebowitz
D. N.
.
1998
.
The roles of human viruses in the pathogenesis of lymphoma
.
Semin. Oncol.
25
:
461
475
.
26
Thorley-Lawson
D. A.
2001
.
Epstein-Barr virus: exploiting the immune system
.
Nat. Rev. Immunol.
1
:
75
82
.
27
Devergne
O.
,
Hatzivassiliou
E.
,
Izumi
K. M.
,
Kaye
K. M.
,
Kleijnen
M. F.
,
Kieff
E.
,
Mosialos
G.
.
1996
.
Association of TRAF1, TRAF2, and TRAF3 with an Epstein-Barr virus LMP1 domain important for B-lymphocyte transformation: role in NF-kappaB activation
.
Mol. Cell. Biol.
16
:
7098
7108
.
28
Shirakata
M.
,
Imadome
K.
,
Okazaki
K.
,
Hirai
K.
.
2001
.
Activation of TRAF5 and TRAF6 signal cascades negatively regulates the latent replication origin of EBV through p38 mitogen-activated protein kinase
.
J. Virol.
75
:
5059
5068
.
29
Lomaga
M. A.
,
Yeh
W. C.
,
Sarosi
I.
,
Duncan
G. S.
,
Furlonger
C.
,
Ho
A.
,
Morony
S.
,
Capparelli
C.
,
Van
G.
,
Kaufman
S.
, et al
.
1999
.
TRAF6 deficiency results in osteopetrosis and defective interleukin-1, CD40, and LPS signaling
.
Genes Dev.
13
:
1015
1024
.
30
Xu
Y.
,
Cheng
G.
,
Baltimore
D.
.
1996
.
Targeted disruption of TRAF3 leads to postnatal lethality and defective T-dependent immune responses
.
Immunity
5
:
407
415
.
31
Yeh
W. C.
,
Shahinian
A.
,
Speiser
D.
,
Kraunus
J.
,
Billia
F.
,
Wakeham
A.
,
de la Pompa
J. L.
,
Ferrick
D.
,
Hum
B.
,
Iscove
N.
, et al
.
1997
.
Early lethality, functional NF-kappaB activation, and increased sensitivity to TNF-induced cell death in TRAF2-deficient mice
.
Immunity
7
:
715
725
.
32
Hostager
B. S.
,
Haxhinasto
S. A.
,
Rowland
S. L.
,
Bishop
G. A.
.
2003
.
Tumor necrosis factor receptor-associated factor 2 (TRAF2)-deficient B lymphocytes reveal novel roles for TRAF2 in CD40 signaling
.
J. Biol. Chem.
278
:
45382
45390
.
33
Arcipowski
K. M.
,
Bishop
G. A.
.
2012
.
TRAF binding is required for a distinct subset of in vivo B cell functions of the oncoprotein LMP1
.
J. Immunol.
189
:
5165
5170
.
34
Arcipowski
K. M.
,
Stunz
L. L.
,
Graham
J. P.
,
Kraus
Z. J.
,
Vanden Bush
T. J.
,
Bishop
G. A.
.
2011
.
Molecular mechanisms of TNFR-associated factor 6 (TRAF6)utilization by the oncogenic viral mimic of CD40, latent membrane protein 1 (LMP1)
.
J. Biol. Chem.
286
:
9948
9955
.
35
Graham
J. P.
,
Moore
C. R.
,
Bishop
G. A.
.
2009
.
Roles of the TRAF2/3 binding site in differential B cell signaling by CD40 and its viral oncogenic mimic, LMP1
.
J. Immunol.
183
:
2966
2973
.
36
Kraus
Z. J.
,
Nakano
H.
,
Bishop
G. A.
.
2009
.
TRAF5 is a critical mediator of in vitro signals and in vivo functions of LMP1, the viral oncogenic mimic of CD40
.
Proc. Natl. Acad. Sci. USA
106
:
17140
17145
.
37
Xie
P.
,
Hostager
B. S.
,
Bishop
G. A.
.
2004
.
Requirement for TRAF3 in signaling by LMP1 but not CD40 in B lymphocytes
.
J. Exp. Med.
199
:
661
671
.
38
Xie
P.
,
Hostager
B. S.
,
Munroe
M. E.
,
Moore
C. R.
,
Bishop
G. A.
.
2006
.
Cooperation between TNF receptor-associated factors 1 and 2 in CD40 signaling
.
J. Immunol.
176
:
5388
5400
.
39
Haxhinasto
S. A.
,
Hostager
B. S.
,
Bishop
G. A.
.
2002
.
Cutting edge: molecular mechanisms of synergy between CD40 and the B cell antigen receptor: role for TNF receptor-associated factor 2 in receptor interaction
.
J. Immunol.
169
:
1145
1149
.
40
Hostager
B. S.
,
Bishop
G. A.
.
1999
.
Cutting Edge: Contrasting roles of TRAF2 and TRAF3 in CD40-mediated B lymphocyte activation
.
J. Immunol.
162
:
6307
6311
.
41
Xie
P.
,
Bishop
G. A.
.
2004
.
Roles of TRAF3 in signaling to B lymphocytes by CTAR regions 1 and 2 of the EBV-encoded oncoprotein LMP1
.
J. Immunol.
173
:
5546
5555
.
42
Rickert
R. C.
,
Roes
J.
,
Rajewsky
K.
.
1997
.
B lymphocyte-specific, Cre-mediated mutagenesis in mice
.
Nucleic Acids Res.
25
:
1317
1318
.
43
Xie
P.
,
Stunz
L. L.
,
Larison
K. D.
,
Yang
B.
,
Bishop
G. A.
.
2007
.
Tumor necrosis factor receptor-associated factor 3 is a critical regulator of B cell homeostasis in secondary lymphoid organs
.
Immunity
27
:
253
267
.
44
Gardam
S.
,
Sierro
F.
,
Basten
A.
,
Mackay
F.
,
Brink
R.
.
2008
.
TRAF2 and TRAF3 signal adapters act cooperatively to control the maturation and survival signals delivered to B cells by the BAFF receptor
.
Immunity
28
:
391
401
.
45
Xie
P.
,
Poovassery
J. S.
,
Stunz
L. L.
,
Smith
S. M.
,
Schultz
M. L.
,
Carlin
L. E.
,
Bishop
G. A.
.
2011
.
Enhanced TLR responses of TRAF3-deficient B lymphocytes
.
J. Leukoc. Biol.
90
:
1149
1157
.
46
Xie
P.
,
Kraus
Z. J.
,
Stunz
L. L.
,
Liu
Y.
,
Bishop
G. A.
.
2011
.
TNF receptor-associated factor 3 is required for T cell-mediated immunity and TCR/CD28 signaling
.
J. Immunol.
186
:
143
155
.
47
Yi
Z.
,
Stunz
L. L.
,
Bishop
G. A.
.
2013
.
TNF receptor-associated factor 3 plays a key role in the development and function of iNKT cells
.
J. Exp. Med.
210
:
1079
1086
.

The author has no financial conflicts of interest.