In the United States, lung infections consistently rank in the top 10 leading causes of death, accounting for >50,000 deaths annually. Moreover, >140,000 deaths occur annually as a result of chronic lung diseases, some of which may be complicated by an infectious process. The lung is constantly exposed to the environment and is susceptible to infectious complications caused by bacterial, viral, fungal, and parasitic pathogens. Indeed, we are continually faced with the threat of morbidity and mortality associated with annual influenza virus infections, new respiratory viruses (e.g., SARS-CoV), and lung infections caused by antibiotic-resistant “ESKAPE pathogens” (three of which target the lung). This review highlights innate immune receptors and cell types that function to protect against infectious challenges to the respiratory system yet also may be associated with exacerbations in chronic lung diseases.

The major function of the respiratory system is to procure O2 and to eliminate CO2 from the body; thus, breathing is a physiologic function required to sustain life. However, in an aberrant view, breathing may paradoxically be considered as contributing to mortality. This is because with every breath, toxins, noxious gases, pollutants, particulates, and allergens may be introduced into the lungs. Moreover, indoor and outdoor air quality and environmental sampling studies detected enumerable microorganism concentrations per cubic meter in public buildings, homes, and even healthcare facilities (1, 2). Altogether, these environmental exposures may ultimately lead to inflammatory and pathological changes that increase the risk for infection. Indeed, although community-acquired pneumonia and influenza result in >50,000 deaths in the United States, chronic lower respiratory diseases are the third leading cause of death (>140,000) in the United States (http://www.cdc.gov/nchs/fastats/deaths.htm). These chronic lower respiratory diseases largely include such diseases as asthma and chronic obstructive pulmonary disease (COPD), both of which have known associations with microorganisms (3, 4). This association can be viewed in the proverbial “chicken or the egg” sense: exposure to microorganisms may cause inflammatory and pathological changes that result in the development of asthma or COPD or, conversely, asthma or COPD may result in a lung microenvironment that is conducive to the acquisition of microorganisms and subsequent infectious exacerbations. This article focuses primarily on innate recognition and cellular host defense mechanisms that drive the elimination of pathogens from the lung that may also contribute to lung diseases, such as asthma and COPD.

Nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs) are a family of >20 intracellularly localized receptors that recognize numerous pathogen associated molecular patterns (microbial-associated factors recognized by the innate immune system) and damage associated molecular patterns (nonmicrobial products generated during inflammation and tissue injury), including bacterial flagellin, lipoproteins, toxins, and muramyl dipeptide (reviewed in Ref. 5). NLRs came to prominence over 12 years ago when mutations in the NOD2 receptor were found to be associated with susceptibility to Crohn’s disease (6). Coming on the heels of the initial discovery and subsequent intensive study of TLRs in innate immune responses (reviewed extensively in Ref. 7), these findings launched an explosion of research into non-TLRs that were equally important in innate immune responses to pathogens. NLRs may be subdivided into signaling (NOD1, NOD2), inflammasome-generating (NLRP3, NLRC4), and immunoregulatory (NLRX1, NLRP6, NLRP12) categories (5, 8). NLRs have been studied in lung immune responses to bacterial infections, including Klebsiella pneumoniae (9), Pseudomonas aeruginosa (10), Streptococcus pneumoniae (11), Staphylococcus aureus (12), and Mycobacterium tuberculosis (13), and viral infections, such as influenza (14) and respiratory syncytial virus (RSV) (15).

Retinoic acid–inducible gene-I (RIG-I)-like receptors (RLRs) include three DExD/H box RNA helicases, RIG-I, melanoma differentiation factor 5 (MDA5), and laboratory of genetics and physiology 2 (LGP-2). Although RIG-I and MDA5 recognize RNA in the cytosol (reviewed in Ref. 16), LGP-2 does not; rather, it is thought to be a negative regulator of RIG-I and MDA5 (17). Intriguingly, however, LGP-2 overexpression results in improved survival, despite similar viral titers as in wild-type mice, yet in the presence of reduced antiviral and inflammatory responses (lower IFN-α, IFN-β, IFN-λ, RANTES, and TNF-α levels), after influenza exposure (18). Ligation of RIG-I and MDA5 leads to activation of the adaptor protein MAVS (19) and subsequent induction of type I antiviral and associated inflammatory responses via IRF3 and IRF7 (19, 20). RIG-I initiates immune responses to influenza (21), RSV (22), and human metapneumovirus (23). Although there is some overlap (22, 24), MDA5 may show specificity over RIG-I for some viruses, such as parainfluenza (25). In fact, recent evidence suggests that MDA5 is required for lung innate immune responses to parainfluenza (26) and is also required for regulating chronic inflammation postinfection (27). Recently, it was demonstrated that mice deficient in the guanine nucleotide exchange factor GEF-H1 lack RIG-I– and MDA5-dependent phosphorylation of IRF3 and were more susceptible to lung infection with influenza A (28). Studies also showed that some viruses have become adept at evading RIG-I– and MDA5-mediated events. For example, the NS1 protein of influenza A virus may bind to the RIG-I–IPS1 complex and blocks downstream signaling (29). Similarly, the V proteins of many paramyxoviruses interact with MDA5 and may inhibit its function (30). More recently, the 4a protein of the Middle East respiratory syndrome coronavirus inhibits PACT, a cellular dsRNA-binding protein that binds to RIG-I and MDA5 to activate IFN production (31). Although more prominently studied in antiviral responses, studies showed that RLRs (primarily RIG-I) also may participate in innate responses to lung bacterial pathogens, such as Legionella pneumophila (32).

C-type lectin receptors (CLRs) are a large, conserved family of pattern recognition receptors (PRRs) that primarily bind carbohydrate ligands via a carbohydrate recognition domain (CRD) or C-type lectin–like domain (CTLD) (33). There are 17 known CLR subgroups (34). The most well-described CLRs include group II (calcium dependent with single CRDs), group V (calcium independent with single CTLDs), and group VI (calcium dependent with multiple CRDs). Prominent members of group II CLRs are DC-SIGN, Mincle, SIGNR, and Dectin-2, and they primarily recognize mannose-containing ligands (35). With respect to lung infections, group II CLRs are associated with the recognition of and subsequent binding/entry of or innate responsiveness to Mycobacterium spp. (36), K. pneumoniae (37), S. pneumoniae (38), Histoplasma capsulatum (39), Cryptococcus neoformans (40), influenza (41) and severe acute respiratory syndrome (42).

The most prominent member of group V CLRs is the β-glucan receptor Dectin-1. Dectin-1 is reported to mediate multiple innate immune responses upon myeloid cell recognition of various lung fungal pathogens, including Aspergillus fumigatus (43), Coccidioides immitis (44), and Pneumocystis carinii (45). Although Mycobacterium spp. do not have β-glucans in their cell wall, Dectin-1 may promote innate cellular responses to this pathogen via recognition of an unknown ligand (46). However, data argue both for (47) and against (48) a role for Dectin-1 in host defense against Mycobacterium spp. Recent studies focused on a role for Dectin-1 in A. fumigatus–associated asthma. In a chronic live A. fumigatus conidia exposure model, BALB/c mice displayed significantly more TNF-α–producing dendritic cells (DCs) and macrophages in the lung, which were dependent on Dectin-1, compared with BL/6 mice (49). In our work, we extended this study by showing that Dectin-1–dependent IL-22 signaling contributed to the development of airway hyperresponsiveness (AHR), proallergic and proinflammatory cytokine and chemokine production, neutrophil recruitment, and IL-17A and IL-22 production (50). In another study using a different fungal asthma model, less severe asthma in mice deficient in TLR9 correlated with significantly lower Dectin-1 mRNA expression (51); however, in a subsequent study, this group reported that TLR6-deficient mice had more severe fungal asthma despite lower Dectin-1 expression and Th17 development (52). Another study investigating Aspergillus versicolor–associated asthma demonstrated no effect on AHR in the absence of Dectin-1, although Dectin-1 drove Th17 responses (53). In contrast, Cladosporium cladosporioides–associated asthma resulted in elevated Th2 responses and AHR, which was not dependent on Dectin-1 (53). However, β-glucans in the C. cladosporioides cell wall may be exposed after heat killing the organism, which then results in Dectin-1–dependent responses (54). Finally, although Dectin-1 is most recognized as an essential initiator of the innate immune response against various fungal pathogens, it also was shown to bind an unidentified ligand on T cells, and it can regulate T cell activation and responses (55).

The most prominent members of group VI CLRs are the macrophage mannose receptor (MR) and DEC-205. Similar to group II CLRs, the ligand specificity of group VI is also mannan/mannose moieties, although MR also may bind sialyl LewisX Ag and N-acetyl glucosamine (35). In turn, the pathogens recognized by the MR are similar to those in group II CLRs and include Mycobacterium spp. (56), K. pneumoniae (57), S. pneumoniae (57), and C. neoformans (58). DEC-205 binds ligands on lung-associated pathogens, such as Yersinia pestis plasminogen activator and Escherichia coli K12 strains (59), and it was targeted in vaccine studies for inducing lung immunity to Y. pestis (60) and M. tuberculosis (61).

Scavenger receptors (SRs) are a diverse range of receptors consisting of eight classes with a myriad of ligand specificity, ranging from host proteins to microbial components (62). The best-studied SRs are those found in class A, which include SR-A1 and MARCO. Early studies with SR-A1 identified it as a potential PRR for the bacterial components (63), with subsequent studies identifying a prominent role for it in immunity against S. pneumoniae (64). However, in a surprising recent finding, SR-A1–deficient mice were observed to be more resistant to polymicrobial sepsis, because lung NF-κB activity was attenuated in the absence of SR-A1, indicating that SR-A1 plays a role in pathophysiology of sepsis/shock (65). Similarly, studies with the lung fungus C. neoformans showed that SR-A1–deficient mice are more resistant to infection as a result of lower Th2 responses, suggesting that C. neoformans may use SR-A1 to interfere with the development of anticryptococcal Th1 responses (66). In contrast, mice double deficient in SR-A1 and CD36 (see below) demonstrate resistance to peritoneal S. aureus infection but have increased susceptibility to S. aureus lung infection (67), suggesting tissue-specific roles for some SRs in host defense. Like SR-A1, MARCO plays a critical role in immunity against S. pneumoniae (68), and, based on binding studies, it also may play a role in innate lung responses to E. coli and S. aureus (69). Both MARCO and SR-A1 also appear to play a role in regulating allergic responses in the lung at the level of DC migration (70). MARCO also may contribute to detrimental inflammatory responses during influenza infection (71). CD36 is the prototype class B SR and is best known for binding to Plasmodium spp., in addition to the induction of antimalarial proinflammatory responses (72). However, malaria infection is often accompanied by acute lung injury, with recent data suggesting that CD36 functions to sequester Plasmodium spp., which results in the complicating inflammatory response (73). CD36 binds the LprA lipoprotein of M. tuberculosis to drive macrophage and DC responsiveness (74), although CD36-deficient mice do not appear to be susceptible to acute or chronic M. tuberculosis infection, unless this is combined with SR-AI/II deficiency (75).

LOX-1 is a member of class E SRs and shares homology with CLRs, because it is one of only two SRs to possess a CTLD (62). Although well studied in atherosclerosis, binding studies support a putative role for LOX-1 in immune responsiveness to E. coli and S. aureus (76). Another study showed that blocking LOX-1 improves morbidity during acute lung injury (77), suggesting that LOX-1 signaling contributes to lung pathophysiology, similar to that proposed for SR-A1. Airway epithelial cell–expressed LOX-1 was recently implicated in the recognition of dsRNA viruses in the lung (78). The lone member of class G SRs is SR-PSOX (79), which is identical to the chemokine CXCL16; thus, it is structurally unique among SRs (80). Another study has shown that expression of CXCR6, the receptor for CXCL16, on lung T cells is a correlate of local protective immunity against M. tuberculosis (81). CXCL16 also may play a role in lung NKT cell homeostasis, because these cells are significantly reduced in mice deficient in CXCR6 (82). Moreover, NKT cells are elevated in the lungs of germ-free mice, leading to increased morbidity in an asthma model, which correlated with increased lung expression of CXCL16 (83).

Epithelial cells serve not only as a physical barrier to the outside environment but also represent one of the first lines of innate host defense against respiratory pathogens (84). The respiratory system is divided into the upper airway tract, composed of the nasal sinuses and pharynx, and the lower tract, composed of the trachea, which successively branches in bronchi, bronchioles, and the alveoli where exchange of O2 and CO2 occurs. The respiratory tract is lined with several types of pseudo-stratified epithelial cells connected by tight junctions that perform a variety of innate host defense functions in the airways, including particulate sweeping by ciliated columnar cells, mucus production by goblet cells, and surfactant production by Clara cells (85). The alveoli are composed of type I alveolar epithelial cells, which are primarily responsible for gas exchange, and type II alveolar epithelial cells, which serve primarily as immune responders (86). Mucociliary clearance is a key component of innate lung epithelium host defense. Mucins produced by goblet cells are rapidly hydrated into mucus, which traps pathogens and allows for their continual removal from the distal airways via movement by ciliated epithelial cells into the pharynx, where it is swallowed (87). In addition to barrier protection and mucus production, epithelial cells directly contribute to microbial killing via dual oxidase expression on the apical surface of epithelial cells, which converts H2O2 to lactoperoxidase and, subsequently, antimicrobial hypothiocyanite ions (88). Airway epithelial cells also secrete antiviral type I IFN, lactoferrin, β-defensins, and NO in response to many respiratory infections (89). Studies in both humans and animals show that airway epithelial cells express many PRRs and produce numerous cytokines and chemokines involved in the recruitment of both innate and adaptive cell types (9093).

Along with epithelial cells, alveolar macrophages in the lung are a first-line defense mechanism against invading pathogens (94). Alveolar macrophages are responsible for clearing all foreign particles or pathogens that enter the alveoli. These cells are highly phagocytic, express numerous PRRs, and produce an extensive array of pro- and anti-inflammatory cytokines, chemokines, and leukotrienes; thus, they are crucial for providing the initial innate immune recognition and response signals (95). Alveolar macrophage host defense capabilities are often determined by their plasticity between classically activated M1 macrophages and alternatively activated M2 macrophages (reviewed extensively in Ref. 96). Conventionally, it was thought that alveolar macrophages were the terminal differentiation state of blood monocytes in the lung after they progress through an interstitial macrophage state (97) or a parenchymal lung macrophage state (98) (which could be the same cell population). Other studies in mice suggest that fetal monocytes are responsible for alveolar macrophages from the lung within the first week of life (99). However, other murine studies suggest that alveolar macrophages may be established before birth, and differentiation through monocytes is not required (100). Interestingly, in Th2-associated lung inflammation, studies showed that development of M2 macrophages occurs not through precursors from the blood, but by local proliferation of macrophages in response to IL-4 (101). Collectively, these studies support both an embryonic and fetal origin of lung macrophages. Although the host defense aspects of these observations are not completely clear, we can speculate that the need for immediate surveillance of inhaled particles, Ags, and pathogens has evolutionarily necessitated the presence of alveolar macrophages in the lung at or shortly after birth. Indeed, alveolar macrophages from neonatal mice express PRRs, such as TLR4 and TLR2, and are responsive to LPS and zymosan (102).

Responding to the various chemokines produced by macrophages and epithelial cells, including IL-8/KC, MIP-1α, MIP-1β, and MIP-2, neutrophils are recruited into the lung, as part of an ongoing inflammatory response, where their predominant function is the intracellular and extracellular killing of microbes. Neutrophil killing is an essential aspect of host defense in a variety of bacterial and fungal pulmonary infections, including A. fumigatus (103), Bordetella pertussis (104), P. aeruginosa (105), S. pneumoniae (106), and K. pneumoniae (107). Like alveolar macrophages, neutrophils express numerous PRRs and mediate microbial killing through production of ROS and secretion of azurophilic granule contents (myeloperoxidase, elastase, defensins, specific granule contents (lactoferrin, cathelicidins) and gelatinase granule contents (lysozymes) (108) and via the formation of neutrophil extracellular traps (109).

To preserve the delicate architecture of the lung that facilitates gas exchange, alveolar macrophages are designed to dispose of invading organisms before they have a chance to initiate a more robust inflammatory response. However, if the alveolar macrophages are overwhelmed, microbes are more likely to encounter pulmonary DCs. In mice, there are three types of DCs in the naive lung: CD11b+CD103 conventional DCs (cDCs) that reside in the lamina propria, CD11bCD103+ cDCs that express tight junctions and intercalate between airway epithelia cells to sample airway environment, and plasmacytoid DCs (pDCs) found in the conducting airways (110). During inflammatory responses, a fourth type of DC, monocyte-derived FcεRI+ inflammatory DCs, may be found in the lung (110). DCs robustly express TLRs, NLRs, CLRs, and RLRs, which allows them to sense a wide variety of innate stimuli. Upon activation, cDCs and pDCs mature and migrate to lung-draining lymph nodes where they present Ag to direct a T cell response (111). In addition, cDCs, monocyte-derived FcεRI+ inflammatory DCs, and pDCs contribute to innate antiviral responses (influenza, RSV) (112, 113) and M. tuberculosis (114) lung infection through the production of type 1 IFNs.

Since the discovery of γδ T cells, they have remained a fascinating heterogeneous subset of cells that is involved in both innate and adaptive immune responses. They are evolutionarily conserved because homologs can be found in jawless vertebrates; although γδ T cells originate from the same thymic precursor as αβ T cells, they appear to be involved in several nonredundant functions (115). Unlike traditional αβ T cells, γδ T cells express a contrasting TCR that is not MHC restricted (116). γδ T cells were first described in the lung more than 25 years ago and were identified to make up 8–20% of CD3+ cells in the lung (117). We now know that γδ T cells play an early protective role in the lung during infection with pathogens, such as K. pneumoniae (118), M. tuberculosis (119), S. aureus (120), and S. pneumoniae (121). γδ T cells are important sources of “innate IL-17A” in the lung during infection with A. fumigatus (122) and C. neoformans (123).

Innate helper cells/innate lymphoid cells (ILCs) are thought to be the innate counterparts to Th subsets based on their respective cytokine production: IFN-γ (Th1) from the ILC1 subset, IL-5 and IL-13 (Th2) from the ILC2 subset, and IL-17/IL-22 (Th17/Th22) from the ILC3 subset (124). Innate helper type-2 cells (ILC2), also called nuocytes (125) or natural helper cells (126), are part of the ILC family that are developmentally related to NK cells (ILC1) and lymphoid tissue inducer cells (ILC3). Early studies putatively suggested that an ILC2 population existed in the lung after the production of IL-5 and IL-13 was observed in mice lacking conventional T and B cells (127). ILC2s exert a powerful antiparasitic defense against Nippostrongylus brasiliensis and are sufficient for worm expulsion mediated through production of IL-13 (128); ILC2s also promote tissue repair during influenza infection (129). However, ILC2 in the lungs also can play a role in the exacerbation of AHR seen in asthma, because IL-25 and IL-33 promote the expansion of IL-13–producing ILC2s that then stimulate mature DCs to migrate to the draining lymph node where they promote allergic Th2 cell responses (130). ILC3s are found predominantly in mucosal tissues like the gut, yet ILC3s were identified as sources of innate IL-17 and IL-22 early after exposure to bacterial pathogens, such as S. pneumoniae (131), or in models of experimental asthma (132, 133).

As referred to earlier, recent mortality data (CDC, 2011) indicated that ∼2.5 million people die in the United States each year, with nearly 200,000 of these deaths associated with a lung infection (∼50,000 deaths from influenza, pneumonia) or a lung disease (∼140,000+ from asthma, COPD, etc.). With respect to the latter, disease-coding data indicate that these lung diseases may be associated with infectious complications. It is easy to speculate that, in asthma or COPD, immune responses during microbial exposure may exacerbate disease (3, 4). For example, studies showed that lung infection with Haemophilus influenzae induces NLRP3 expression (134). This is hypothesized to be a potentially immunopathogenic mechanism in COPD, because H. influenzae is strongly associated with COPD, and individuals with COPD have elevated levels of uric acid (135), which activate NLRP3 (136). Thus, a consequence of H. influenzae exposure in COPD is the upregulation and activation of NLRP3 inflammatory signals that could lead to more severe lung disease. Genetic data showed that single-nucleotide polymorphisms in Nod1 and Nod2 are associated with an increased risk for asthma (137, 138), whereas recent studies implicated genetic mutations in SR-A1 in the development of or exacerbations in COPD (139, 140). It is tempting to speculate that mutations in PRRs, such as NOD1, NOD2, and SR-A1, may result in increased colonization/exposure or subclinical infection with microorganisms that could lead to enhanced inflammatory responses and subsequent increased asthma or COPD severity. In contrast to lower PRR expression, differential expression of cellular receptors or numbers of cellular effectors also may contribute to immunopathogenesis in lung diseases. For example, although the function of the SR/chemokine CXCL16 in lung host defense is not completely clear, its expression on CD8+ T cells in the lung correlates with disease severity in COPD (141). Furthermore, a recent study investigating the distribution of γδ T cells in the lungs of human subjects with COPD made the surprising finding of significantly lower numbers of γδ T cells in sputum and lung lavage fluid from those with COPD, which correlated with lung function decline (142). Collectively, these observations lay the foundation for examining CXCL16/CXCR6 expression and function, as well as γδ T cells, in lung infection models of organisms that are commonly associated with COPD (4). Finally, defects in lung epithelium barrier and mucus production, which often lead to hyperneutrophilic inflammation in the lungs, coupled with recurrent infections and exacerbations, are the hallmarks of many human chronic pulmonary diseases, such as asthma, cystic fibrosis, and COPD (143145).

Because the lung is continually exposed to the environment, innate immune mechanisms must be equipped to handle the recognition of a diverse array of foreign ligands (Table I) and respond in a rapid and robust manner to clear invading pathogens before they functionally compromise the lung. The importance of innate immunity is reinforced by the identification of numerous genetic polymorphisms that result in lung infections (146). However, innate host defense against lung pathogens may come at the price of developing or exacerbating a lung-specific condition, such as asthma or COPD. This complex system is illustrated in Fig. 1; the homeostatic lung is poised to react to microbial exposure via epithelial cells, alveolar macrophages, DCs, ILCs, and γδ T cells (Fig. 1A). Exposure to a bacterial, viral, parasitic, or fungal pathogen results in the activation of these cell types, initiating an inflammatory cascade that leads to the recruitment of neutrophils (Fig. 1B). However, in some instances, exposure to or prolonged colonization with an organism results in the persistent recruitment or presence of Th cells (Th2, Th17) or inflammatory ILCs (ILC2, ILC3), which may result in a hypersensitivity reaction and the development of asthma or COPD (Fig. 1C).

Table I.
Non-TLR PRRs in innate lung defense
PRR FamilyLigandLung-Associated Pathogen
NLRs   
 NOD1, NOD2 DAP, MDP Lung response to K. pneumoniae, P. aeruginosa, S. pneumoniae, S. aureus, M. tuberculosis, influenza, and RSV 
RLRs   
 RIG-I, MDA5 Cytosolic RNA Induction of type 1 antiviral response 
 LGP-2 None Potential negative regulator of RIG-I and MDA5 
CLRs   
 Group II (calcium dependent, single CRDs)   
  DC-SIGN, Mincle, SIGNR, Dectin-2 Mannose-containing ligands Recognition of Mycobacterium spp., K. pneumoniae, S. pneumoniae, H. capsulatum, C. neoformans, influenza, and SARS 
 Group V (calcium independent, single CTLDs)   
  Dectin-1 β-glucan Mediates innate immune responses against several fungal pathogens: A. fumigatus, C. immitis, and P. carinii, as well as host defense against Mycobacterium spp. 
 Group VI (calcium dependent, multiple CRDs)   
  MR Mannan/mannose moieties, sialyl LewisX Ag, GlcNAc Bacterial recognition: Mycobacterium spp., K. pneumoniae, S. pneumoniae, and C. neoformans; potential role in induction of allergic response 
  DEC-205 Mannan/mannose moieties Bacterial recognition: Y. pestis, M. tuberculosis, E. coli strain K12 
SRs   
 Class A   
  SR-A1 Bacterial components, LPS, LTA, CpG Recognition of S. pneumoniae, pathophysiology of sepsis/shock, DC migration 
  MARCO LPS, LTA, CpG Defense against S. pneumoniae, E. coli, and S. aureus; DC migration 
 Class B   
  CD36 Plasmodium spp., C. neoformans, β-glucans, Gram-negative bacteria Proinflammatory responses 
 Class E   
  LOX-1 Gram-positive or -negative bacteria Immune response against E. coli and S. aureus, recognition of double-stranded viruses in the lung 
 Class G   
  SR-PSOX CXCR6, Gram positive or -negative bacteria Identical to CXCL16, protective immunity to M. tuberculosis, potential role in NKT homeostasis 
PRR FamilyLigandLung-Associated Pathogen
NLRs   
 NOD1, NOD2 DAP, MDP Lung response to K. pneumoniae, P. aeruginosa, S. pneumoniae, S. aureus, M. tuberculosis, influenza, and RSV 
RLRs   
 RIG-I, MDA5 Cytosolic RNA Induction of type 1 antiviral response 
 LGP-2 None Potential negative regulator of RIG-I and MDA5 
CLRs   
 Group II (calcium dependent, single CRDs)   
  DC-SIGN, Mincle, SIGNR, Dectin-2 Mannose-containing ligands Recognition of Mycobacterium spp., K. pneumoniae, S. pneumoniae, H. capsulatum, C. neoformans, influenza, and SARS 
 Group V (calcium independent, single CTLDs)   
  Dectin-1 β-glucan Mediates innate immune responses against several fungal pathogens: A. fumigatus, C. immitis, and P. carinii, as well as host defense against Mycobacterium spp. 
 Group VI (calcium dependent, multiple CRDs)   
  MR Mannan/mannose moieties, sialyl LewisX Ag, GlcNAc Bacterial recognition: Mycobacterium spp., K. pneumoniae, S. pneumoniae, and C. neoformans; potential role in induction of allergic response 
  DEC-205 Mannan/mannose moieties Bacterial recognition: Y. pestis, M. tuberculosis, E. coli strain K12 
SRs   
 Class A   
  SR-A1 Bacterial components, LPS, LTA, CpG Recognition of S. pneumoniae, pathophysiology of sepsis/shock, DC migration 
  MARCO LPS, LTA, CpG Defense against S. pneumoniae, E. coli, and S. aureus; DC migration 
 Class B   
  CD36 Plasmodium spp., C. neoformans, β-glucans, Gram-negative bacteria Proinflammatory responses 
 Class E   
  LOX-1 Gram-positive or -negative bacteria Immune response against E. coli and S. aureus, recognition of double-stranded viruses in the lung 
 Class G   
  SR-PSOX CXCR6, Gram positive or -negative bacteria Identical to CXCL16, protective immunity to M. tuberculosis, potential role in NKT homeostasis 

GlcNAc, N-acetyl glucosamine; SARS, severe acute respiratory syndrome.

FIGURE 1.

(A) The lung at baseline is constantly exposed to fungal spores, bacteria, and viral particles through alveolar macrophage phagocytosis, IFN production by epithelial cells, and the mucociliary escalator. (B) If these defenses become overwhelmed during an active infection, a robust inflammatory process involving alveolar macrophages, DCs, γδ T cells, ILCs, neutrophils, and epithelial cells commences and involves a variety of antimicrobial mediators. (C) However, during persistent exposure, the inflammatory response remains, contributing to the exacerbation of chronic lung diseases, such as COPD and asthma, through an abundance of neutrophils and Th2/Th17, ILC2, and ILC3 cells.

FIGURE 1.

(A) The lung at baseline is constantly exposed to fungal spores, bacteria, and viral particles through alveolar macrophage phagocytosis, IFN production by epithelial cells, and the mucociliary escalator. (B) If these defenses become overwhelmed during an active infection, a robust inflammatory process involving alveolar macrophages, DCs, γδ T cells, ILCs, neutrophils, and epithelial cells commences and involves a variety of antimicrobial mediators. (C) However, during persistent exposure, the inflammatory response remains, contributing to the exacerbation of chronic lung diseases, such as COPD and asthma, through an abundance of neutrophils and Th2/Th17, ILC2, and ILC3 cells.

Close modal

This work was supported by Public Health Service Grants T32 HL007517 (to J.L.W.), R21 HL117090, R01 HL096702, and R01 HL119770 (all to C.S.).

Abbreviations used in this article:

AHR

airway hyperresponsiveness

cDC

conventional DC

CLR

C-type lectin receptor

COPD

chronic obstructive pulmonary disease

CRD

carbohydrate recognition domain

CTLD

C-type lectin–like domain

DC

dendritic cell

ILC

innate lymphoid cell

LGP-2

laboratory of genetic and physiology 2

MDA5

melanoma differentiation factor 5

MR

mannose receptor

NLR

NOD-like receptor

NOD

nucleotide-binding oligomerization domain

pDC

plasmacytoid DC

PRR

pattern recognition receptor

RIG-I

retinoic acid–inducible gene-I

RLR

RIG-I–like receptor

RSV

respiratory syncytial virus

SR

scavenger receptor.

1
Sessa
R.
,
Di
P. M.
,
Schiavoni
G.
,
Santino
I.
,
Altieri
A.
,
Pinelli
S.
,
Del
P. M.
.
2002
.
Microbiological indoor air quality in healthy buildings.
New Microbiol.
25
:
51
56
.
2
Menegueti
M. G.
,
Ferreira
L. R.
,
Silva
M. F.
,
Silva
A. S.
,
Bellissimo-Rodrigues
F.
.
2013
.
Assessment of microbiological air quality in hemato-oncology units and its relationship with the occurrence of invasive fungal infections: an integrative review.
Rev. Soc. Bras. Med. Trop.
46
:
391
396
.
3
Edwards
M. R.
,
Bartlett
N. W.
,
Hussell
T.
,
Openshaw
P.
,
Johnston
S. L.
.
2012
.
The microbiology of asthma.
Nat. Rev. Microbiol.
10
:
459
471
.
4
Rangelov
K.
,
Sethi
S.
.
2014
.
Role of infections.
Clin. Chest Med.
35
:
87
100
.
5
Chaput
C.
,
Sander
L. E.
,
Suttorp
N.
,
Opitz
B.
.
2013
.
NOD-Like Receptors in Lung Diseases.
Front. Immunol.
4
:
393
.
6
Hugot
J. P.
,
Chamaillard
M.
,
Zouali
H.
,
Lesage
S.
,
Cézard
J. P.
,
Belaiche
J.
,
Almer
S.
,
Tysk
C.
,
O’Morain
C. A.
,
Gassull
M.
, et al
.
2001
.
Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn’s disease.
Nature
411
:
599
603
.
7
O’Neill
L. A.
,
Golenbock
D.
,
Bowie
A. G.
.
2013
.
The history of Toll-like receptors - redefining innate immunity.
Nat. Rev. Immunol.
13
:
453
460
.
8
Liu
D.
,
Rhebergen
A. M.
,
Eisenbarth
S. C.
.
2013
.
Licensing Adaptive Immunity by NOD-Like Receptors.
Front. Immunol.
4
:
486
.
9
Regueiro
V.
,
Moranta
D.
,
Frank
C. G.
,
Larrarte
E.
,
Margareto
J.
,
March
C.
,
Garmendia
J.
,
Bengoechea
J. A.
.
2011
.
Klebsiella pneumoniae subverts the activation of inflammatory responses in a NOD1-dependent manner.
Cell. Microbiol.
13
:
135
153
.
10
Travassos
L. H.
,
Carneiro
L. A.
,
Girardin
S. E.
,
Boneca
I. G.
,
Lemos
R.
,
Bozza
M. T.
,
Domingues
R. C.
,
Coyle
A. J.
,
Bertin
J.
,
Philpott
D. J.
,
Plotkowski
M. C.
.
2005
.
Nod1 participates in the innate immune response to Pseudomonas aeruginosa.
J. Biol. Chem.
280
:
36714
36718
.
11
Davis
K. M.
,
Nakamura
S.
,
Weiser
J. N.
.
2011
.
Nod2 sensing of lysozyme-digested peptidoglycan promotes macrophage recruitment and clearance of S. pneumoniae colonization in mice.
J. Clin. Invest.
121
:
3666
3676
.
12
Kapetanovic
R.
,
Jouvion
G.
,
Fitting
C.
,
Parlato
M.
,
Blanchet
C.
,
Huerre
M.
,
Cavaillon
J. M.
,
Adib-Conquy
M.
.
2010
.
Contribution of NOD2 to lung inflammation during Staphylococcus aureus-induced pneumonia.
Microbes Infect.
12
:
759
767
.
13
Divangahi
M.
,
Mostowy
S.
,
Coulombe
F.
,
Kozak
R.
,
Guillot
L.
,
Veyrier
F.
,
Kobayashi
K. S.
,
Flavell
R. A.
,
Gros
P.
,
Behr
M. A.
.
2008
.
NOD2-deficient mice have impaired resistance to Mycobacterium tuberculosis infection through defective innate and adaptive immunity.
J. Immunol.
181
:
7157
7165
.
14
Allen
I. C.
,
Scull
M. A.
,
Moore
C. B.
,
Holl
E. K.
,
McElvania-TeKippe
E.
,
Taxman
D. J.
,
Guthrie
E. H.
,
Pickles
R. J.
,
Ting
J. P.
.
2009
.
The NLRP3 inflammasome mediates in vivo innate immunity to influenza A virus through recognition of viral RNA.
Immunity
30
:
556
565
.
15
Segovia
J.
,
Sabbah
A.
,
Mgbemena
V.
,
Tsai
S. Y.
,
Chang
T. H.
,
Berton
M. T.
,
Morris
I. R.
,
Allen
I. C.
,
Ting
J. P.
,
Bose
S.
.
2012
.
TLR2/MyD88/NF-κB pathway, reactive oxygen species, potassium efflux activates NLRP3/ASC inflammasome during respiratory syncytial virus infection.
PLoS ONE
7
:
e29695
.
16
Vabret
N.
,
Blander
J. M.
.
2013
.
Sensing microbial RNA in the cytosol.
Front. Immunol.
4
:
468
.
17
Saito
T.
,
Hirai
R.
,
Loo
Y. M.
,
Owen
D.
,
Johnson
C. L.
,
Sinha
S. C.
,
Akira
S.
,
Fujita
T.
,
Gale
M.
 Jr.
2007
.
Regulation of innate antiviral defenses through a shared repressor domain in RIG-I and LGP2.
Proc. Natl. Acad. Sci. USA
104
:
582
587
.
18
Si-Tahar
M.
,
Blanc
F.
,
Furio
L.
,
Chopy
D.
,
Balloy
V.
,
Lafon
M.
,
Chignard
M.
,
Fiette
L.
,
Langa
F.
,
Charneau
P.
,
Pothlichet
J.
.
2014
.
Protective role of LGP2 in influenza virus pathogenesis.
J. Infect. Dis.
210
:
214
223
.
19
Seth
R. B.
,
Sun
L.
,
Ea
C. K.
,
Chen
Z. J.
.
2005
.
Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-kappaB and IRF 3.
Cell
122
:
669
682
.
20
Kawai
T.
,
Takahashi
K.
,
Sato
S.
,
Coban
C.
,
Kumar
H.
,
Kato
H.
,
Ishii
K. J.
,
Takeuchi
O.
,
Akira
S.
.
2005
.
IPS-1, an adaptor triggering RIG-I- and Mda5-mediated type I interferon induction.
Nat. Immunol.
6
:
981
988
.
21
Kato
H.
,
Takeuchi
O.
,
Sato
S.
,
Yoneyama
M.
,
Yamamoto
M.
,
Matsui
K.
,
Uematsu
S.
,
Jung
A.
,
Kawai
T.
,
Ishii
K. J.
, et al
.
2006
.
Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses.
Nature
441
:
101
105
.
22
Loo
Y. M.
,
Fornek
J.
,
Crochet
N.
,
Bajwa
G.
,
Perwitasari
O.
,
Martinez-Sobrido
L.
,
Akira
S.
,
Gill
M. A.
,
García-Sastre
A.
,
Katze
M. G.
,
Gale
M.
 Jr.
2008
.
Distinct RIG-I and MDA5 signaling by RNA viruses in innate immunity.
J. Virol.
82
:
335
345
.
23
Liao
S.
,
Bao
X.
,
Liu
T.
,
Lai
S.
,
Li
K.
,
Garofalo
R. P.
,
Casola
A.
.
2008
.
Role of retinoic acid inducible gene-I in human metapneumovirus-induced cellular signalling.
J. Gen. Virol.
89
:
1978
1986
.
24
Baños-Lara
Mdel R.
,
Ghosh
A.
,
Guerrero-Plata
A.
.
2013
.
Critical role of MDA5 in the interferon response induced by human metapneumovirus infection in dendritic cells and in vivo.
J. Virol.
87
:
1242
1251
.
25
Childs
K.
,
Stock
N.
,
Ross
C.
,
Andrejeva
J.
,
Hilton
L.
,
Skinner
M.
,
Randall
R.
,
Goodbourn
S.
.
2007
.
mda-5, but not RIG-I, is a common target for paramyxovirus V proteins.
Virology
359
:
190
200
.
26
Yount
J. S.
,
Gitlin
L.
,
Moran
T. M.
,
López
C. B.
.
2008
.
MDA5 participates in the detection of paramyxovirus infection and is essential for the early activation of dendritic cells in response to Sendai Virus defective interfering particles.
J. Immunol.
180
:
4910
4918
.
27
Kim
W. K.
,
Jain
D.
,
Sánchez
M. D.
,
Koziol-White
C. J.
,
Matthews
K.
,
Ge
M. Q.
,
Haczku
A.
,
Panettieri
R. A.
 Jr
,
Frieman
M. B.
,
López
C. B.
.
2014
.
Deficiency of melanoma differentiation-associated protein 5 results in exacerbated chronic postviral lung inflammation.
Am. J. Respir. Crit. Care Med.
189
:
437
448
.
28
Chiang
H. S.
,
Zhao
Y.
,
Song
J. H.
,
Liu
S.
,
Wang
N.
,
Terhorst
C.
,
Sharpe
A. H.
,
Basavappa
M.
,
Jeffrey
K. L.
,
Reinecker
H. C.
.
2014
.
GEF-H1 controls microtubule-dependent sensing of nucleic acids for antiviral host defenses.
Nat. Immunol.
15
:
63
71
.
29
Mibayashi
M.
,
Martínez-Sobrido
L.
,
Loo
Y. M.
,
Cárdenas
W. B.
,
Gale
M.
 Jr
,
García-Sastre
A.
.
2007
.
Inhibition of retinoic acid-inducible gene I-mediated induction of beta interferon by the NS1 protein of influenza A virus.
J. Virol.
81
:
514
524
.
30
Andrejeva
J.
,
Childs
K. S.
,
Young
D. F.
,
Carlos
T. S.
,
Stock
N.
,
Goodbourn
S.
,
Randall
R. E.
.
2004
.
The V proteins of paramyxoviruses bind the IFN-inducible RNA helicase, mda-5, and inhibit its activation of the IFN-beta promoter.
Proc. Natl. Acad. Sci. USA
101
:
17264
17269
.
31
Siu
K. L.
,
Yeung
M. L.
,
Kok
K. H.
,
Yuen
K. S.
,
Kew
C.
,
Lui
P. Y.
,
Chan
C. P.
,
Tse
H.
,
Woo
P. C.
,
Yuen
K. Y.
,
Jin
D. Y.
.
2014
.
Middle east respiratory syndrome coronavirus 4a protein is a double-stranded RNA-binding protein that suppresses PACT-induced activation of RIG-I and MDA5 in the innate antiviral response.
J. Virol.
88
:
4866
4876
.
32
Monroe
K. M.
,
McWhirter
S. M.
,
Vance
R. E.
.
2009
.
Identification of host cytosolic sensors and bacterial factors regulating the type I interferon response to Legionella pneumophila.
PLoS Pathog.
5
:
e1000665
.
33
Hardison
S. E.
,
Brown
G. D.
.
2012
.
C-type lectin receptors orchestrate antifungal immunity.
Nat. Immunol.
13
:
817
822
.
34
van den Berg
L. M.
,
Gringhuis
S. I.
,
Geijtenbeek
T. B.
.
2012
.
An evolutionary perspective on C-type lectins in infection and immunity.
Ann. N. Y. Acad. Sci.
1253
:
149
158
.
35
Sancho
D.
,
Reis e Sousa
C.
.
2012
.
Signaling by myeloid C-type lectin receptors in immunity and homeostasis.
Annu. Rev. Immunol.
30
:
491
529
.
36
Ishikawa
E.
,
Ishikawa
T.
,
Morita
Y. S.
,
Toyonaga
K.
,
Yamada
H.
,
Takeuchi
O.
,
Kinoshita
T.
,
Akira
S.
,
Yoshikai
Y.
,
Yamasaki
S.
.
2009
.
Direct recognition of the mycobacterial glycolipid, trehalose dimycolate, by C-type lectin Mincle.
J. Exp. Med.
206
:
2879
2888
.
37
Steichen
A. L.
,
Binstock
B. J.
,
Mishra
B. B.
,
Sharma
J.
.
2013
.
C-type lectin receptor Clec4d plays a protective role in resolution of Gram-negative pneumonia.
J. Leukoc. Biol.
94
:
393
398
.
38
Geijtenbeek
T. B.
,
Groot
P. C.
,
Nolte
M. A.
,
van Vliet
S. J.
,
Gangaram-Panday
S. T.
,
van Duijnhoven
G. C.
,
Kraal
G.
,
van Oosterhout
A. J.
,
van Kooyk
Y.
.
2002
.
Marginal zone macrophages express a murine homologue of DC-SIGN that captures blood-borne antigens in vivo.
Blood
100
:
2908
2916
.
39
Wang
H.
,
LeBert
V.
,
Hung
C. Y.
,
Galles
K.
,
Saijo
S.
,
Lin
X.
,
Cole
G. T.
,
Klein
B. S.
,
Wüthrich
M.
.
2014
.
C-type lectin receptors differentially induce th17 cells and vaccine immunity to the endemic mycosis of North America.
J. Immunol.
192
:
1107
1119
.
40
Mansour
M. K.
,
Latz
E.
,
Levitz
S. M.
.
2006
.
Cryptococcus neoformans glycoantigens are captured by multiple lectin receptors and presented by dendritic cells.
J. Immunol.
176
:
3053
3061
.
41
Hillaire
M. L.
,
Nieuwkoop
N. J.
,
Boon
A. C.
,
de Mutsert
G.
,
Vogelzang-van Trierum
S. E.
,
Fouchier
R. A.
,
Osterhaus
A. D.
,
Rimmelzwaan
G. F.
.
2013
.
Binding of DC-SIGN to the hemagglutinin of influenza A viruses supports virus replication in DC-SIGN expressing cells.
PLoS ONE
8
:
e56164
.
42
Yang
Z. Y.
,
Huang
Y.
,
Ganesh
L.
,
Leung
K.
,
Kong
W. P.
,
Schwartz
O.
,
Subbarao
K.
,
Nabel
G. J.
.
2004
.
pH-dependent entry of severe acute respiratory syndrome coronavirus is mediated by the spike glycoprotein and enhanced by dendritic cell transfer through DC-SIGN.
J. Virol.
78
:
5642
5650
.
43
Werner
J. L.
,
Metz
A. E.
,
Horn
D.
,
Schoeb
T. R.
,
Hewitt
M. M.
,
Schwiebert
L. M.
,
Faro-Trindade
I.
,
Brown
G. D.
,
Steele
C.
.
2009
.
Requisite role for the dectin-1 beta-glucan receptor in pulmonary defense against Aspergillus fumigatus.
J. Immunol.
182
:
4938
4946
.
44
Viriyakosol
S.
,
Jimenez
Mdel. P.
,
Gurney
M. A.
,
Ashbaugh
M. E.
,
Fierer
J.
.
2013
.
Dectin-1 is required for resistance to coccidioidomycosis in mice.
MBio
4
:
e00597
e12
.
45
Steele
C.
,
Marrero
L.
,
Swain
S.
,
Harmsen
A. G.
,
Zheng
M.
,
Brown
G. D.
,
Gordon
S.
,
Shellito
J. E.
,
Kolls
J. K.
.
2003
.
Alveolar macrophage-mediated killing of Pneumocystis carinii f. sp. muris involves molecular recognition by the Dectin-1 beta-glucan receptor.
J. Exp. Med.
198
:
1677
1688
.
46
Yadav
M.
,
Schorey
J. S.
.
2006
.
The beta-glucan receptor dectin-1 functions together with TLR2 to mediate macrophage activation by mycobacteria.
Blood
108
:
3168
3175
.
47
Das
R.
,
Koo
M. S.
,
Kim
B. H.
,
Jacob
S. T.
,
Subbian
S.
,
Yao
J.
,
Leng
L.
,
Levy
R.
,
Murchison
C.
,
Burman
W. J.
, et al
.
2013
.
Macrophage migration inhibitory factor (MIF) is a critical mediator of the innate immune response to Mycobacterium tuberculosis.
Proc. Natl. Acad. Sci. USA
110
:
E2997
E3006
.
48
Marakalala
M. J.
,
Guler
R.
,
Matika
L.
,
Murray
G.
,
Jacobs
M.
,
Brombacher
F.
,
Rothfuchs
A. G.
,
Sher
A.
,
Brown
G. D.
.
2011
.
The Syk/CARD9-coupled receptor Dectin-1 is not required for host resistance to Mycobacterium tuberculosis in mice.
Microbes Infect.
13
:
198
201
.
49
Fei
M.
,
Bhatia
S.
,
Oriss
T. B.
,
Yarlagadda
M.
,
Khare
A.
,
Akira
S.
,
Saijo
S.
,
Iwakura
Y.
,
Fallert Junecko
B. A.
,
Reinhart
T. A.
, et al
.
2011
.
TNF-alpha from inflammatory dendritic cells (DCs) regulates lung IL-17A/IL-5 levels and neutrophilia versus eosinophilia during persistent fungal infection.
Proc. Natl. Acad. Sci. USA
108
:
5360
5365
.
50
Lilly
L. M.
,
Gessner
M. A.
,
Dunaway
C. W.
,
Metz
A. E.
,
Schwiebert
L.
,
Weaver
C. T.
,
Brown
G. D.
,
Steele
C.
.
2012
.
The β-glucan receptor dectin-1 promotes lung immunopathology during fungal allergy via IL-22.
J. Immunol.
189
:
3653
3660
.
51
Ramaprakash
H.
,
Ito
T.
,
Standiford
T. J.
,
Kunkel
S. L.
,
Hogaboam
C. M.
.
2009
.
Toll-like receptor 9 modulates immune responses to Aspergillus fumigatus conidia in immunodeficient and allergic mice.
Infect. Immun.
77
:
108
119
.
52
Moreira
A. P.
,
Cavassani
K. A.
,
Ismailoglu
U. B.
,
Hullinger
R.
,
Dunleavy
M. P.
,
Knight
D. A.
,
Kunkel
S. L.
,
Uematsu
S.
,
Akira
S.
,
Hogaboam
C. M.
.
2011
.
The protective role of TLR6 in a mouse model of asthma is mediated by IL-23 and IL-17A.
J. Clin. Invest.
121
:
4420
4432
.
53
Mintz-Cole
R. A.
,
Gibson
A. M.
,
Bass
S. A.
,
Budelsky
A. L.
,
Reponen
T.
,
Hershey
G. K.
.
2012
.
Dectin-1 and IL-17A suppress murine asthma induced by Aspergillus versicolor but not Cladosporium cladosporioides due to differences in β-glucan surface exposure.
J. Immunol.
189
:
3609
3617
.
54
Mintz-Cole
R. A.
,
Brandt
E. B.
,
Bass
S. A.
,
Gibson
A. M.
,
Reponen
T.
,
Khurana Hershey
G. K.
.
2013
.
Surface availability of beta-glucans is critical determinant of host immune response to Cladosporium cladosporioides.
J. Allergy Clin. Immunol.
132
:
159
169
.
55
Willment
J. A.
,
Gordon
S.
,
Brown
G. D.
.
2001
.
Characterization of the human beta-glucan receptor and its alternatively spliced isoforms.
J. Biol. Chem.
276
:
43818
43823
.
56
Schlesinger
L. S.
,
Kaufman
T. M.
,
Iyer
S.
,
Hull
S. R.
,
Marchiando
L. K.
.
1996
.
Differences in mannose receptor-mediated uptake of lipoarabinomannan from virulent and attenuated strains of Mycobacterium tuberculosis by human macrophages.
J. Immunol.
157
:
4568
4575
.
57
Zamze
S.
,
Martinez-Pomares
L.
,
Jones
H.
,
Taylor
P. R.
,
Stillion
R. J.
,
Gordon
S.
,
Wong
S. Y.
.
2002
.
Recognition of bacterial capsular polysaccharides and lipopolysaccharides by the macrophage mannose receptor.
J. Biol. Chem.
277
:
41613
41623
.
58
Dan
J. M.
,
Kelly
R. M.
,
Lee
C. K.
,
Levitz
S. M.
.
2008
.
Role of the mannose receptor in a murine model of Cryptococcus neoformans infection.
Infect. Immun.
76
:
2362
2367
.
59
Zhang
S. S.
,
Park
C. G.
,
Zhang
P.
,
Bartra
S. S.
,
Plano
G. V.
,
Klena
J. D.
,
Skurnik
M.
,
Hinnebusch
B. J.
,
Chen
T.
.
2008
.
Plasminogen activator Pla of Yersinia pestis utilizes murine DEC-205 (CD205) as a receptor to promote dissemination.
J. Biol. Chem.
283
:
31511
31521
.
60
Do
Y.
,
Didierlaurent
A. M.
,
Ryu
S.
,
Koh
H.
,
Park
C. G.
,
Park
S.
,
Perlin
D. S.
,
Powell
B. S.
,
Steinman
R. M.
.
2012
.
Induction of pulmonary mucosal immune responses with a protein vaccine targeted to the DEC-205/CD205 receptor.
Vaccine
30
:
6359
6367
.
61
Dong
H.
,
Stanek
O.
,
Salvador
F. R.
,
Länger
U.
,
Morillon
E.
,
Ung
C.
,
Sebo
P.
,
Leclerc
C.
,
Majlessi
L.
.
2013
.
Induction of protective immunity against Mycobacterium tuberculosis by delivery of ESX antigens into airway dendritic cells.
Mucosal Immunol.
6
:
522
534
.
62
Canton
J.
,
Neculai
D.
,
Grinstein
S.
.
2013
.
Scavenger receptors in homeostasis and immunity.
Nat. Rev. Immunol.
13
:
621
634
.
63
Dunne
D. W.
,
Resnick
D.
,
Greenberg
J.
,
Krieger
M.
,
Joiner
K. A.
.
1994
.
The type I macrophage scavenger receptor binds to gram-positive bacteria and recognizes lipoteichoic acid.
Proc. Natl. Acad. Sci. USA
91
:
1863
1867
.
64
Arredouani
M. S.
,
Yang
Z.
,
Imrich
A.
,
Ning
Y.
,
Qin
G.
,
Kobzik
L.
.
2006
.
The macrophage scavenger receptor SR-AI/II and lung defense against pneumococci and particles.
Am. J. Respir. Cell Mol. Biol.
35
:
474
478
.
65
Ozment
T. R.
,
Ha
T.
,
Breuel
K. F.
,
Ford
T. R.
,
Ferguson
D. A.
,
Kalbfleisch
J.
,
Schweitzer
J. B.
,
Kelley
J. L.
,
Li
C.
,
Williams
D. L.
.
2012
.
Scavenger receptor class a plays a central role in mediating mortality and the development of the pro-inflammatory phenotype in polymicrobial sepsis.
PLoS Pathog.
8
:
e1002967
.
66
Qiu
Y.
,
Dayrit
J. K.
,
Davis
M. J.
,
Carolan
J. F.
,
Osterholzer
J. J.
,
Curtis
J. L.
,
Olszewski
M. A.
.
2013
.
Scavenger receptor A modulates the immune response to pulmonary Cryptococcus neoformans infection.
J. Immunol.
191
:
238
248
.
67
Blanchet
C.
,
Jouvion
G.
,
Fitting
C.
,
Cavaillon
J. M.
,
Adib-Conquy
M.
.
2014
.
Protective or deleterious role of scavenger receptors SR-A and CD36 on host resistance to Staphylococcus aureus depends on the site of infection.
PLoS ONE
9
:
e87927
.
68
Arredouani
M.
,
Yang
Z.
,
Ning
Y.
,
Qin
G.
,
Soininen
R.
,
Tryggvason
K.
,
Kobzik
L.
.
2004
.
The scavenger receptor MARCO is required for lung defense against pneumococcal pneumonia and inhaled particles.
J. Exp. Med.
200
:
267
272
.
69
Palecanda
A.
,
Paulauskis
J.
,
Al-Mutairi
E.
,
Imrich
A.
,
Qin
G.
,
Suzuki
H.
,
Kodama
T.
,
Tryggvason
K.
,
Koziel
H.
,
Kobzik
L.
.
1999
.
Role of the scavenger receptor MARCO in alveolar macrophage binding of unopsonized environmental particles.
J. Exp. Med.
189
:
1497
1506
.
70
Arredouani
M. S.
,
Franco
F.
,
Imrich
A.
,
Fedulov
A.
,
Lu
X.
,
Perkins
D.
,
Soininen
R.
,
Tryggvason
K.
,
Shapiro
S. D.
,
Kobzik
L.
.
2007
.
Scavenger Receptors SR-AI/II and MARCO limit pulmonary dendritic cell migration and allergic airway inflammation.
J. Immunol.
178
:
5912
5920
.
71
Ghosh
S.
,
Gregory
D.
,
Smith
A.
,
Kobzik
L.
.
2011
.
MARCO regulates early inflammatory responses against influenza: a useful macrophage function with adverse outcome.
Am. J. Respir. Cell Mol. Biol.
45
:
1036
1044
.
72
Gowda
N. M.
,
Wu
X.
,
Kumar
S.
,
Febbraio
M.
,
Gowda
D. C.
.
2013
.
CD36 contributes to malaria parasite-induced pro-inflammatory cytokine production and NK and T cell activation by dendritic cells.
PLoS ONE
8
:
e77604
.
73
Lovegrove
F. E.
,
Gharib
S. A.
,
Peña-Castillo
L.
,
Patel
S. N.
,
Ruzinski
J. T.
,
Hughes
T. R.
,
Liles
W. C.
,
Kain
K. C.
.
2008
.
Parasite burden and CD36-mediated sequestration are determinants of acute lung injury in an experimental malaria model.
PLoS Pathog.
4
:
e1000068
.
74
Drage
M. G.
,
Pecora
N. D.
,
Hise
A. G.
,
Febbraio
M.
,
Silverstein
R. L.
,
Golenbock
D. T.
,
Boom
W. H.
,
Harding
C. V.
.
2009
.
TLR2 and its co-receptors determine responses of macrophages and dendritic cells to lipoproteins of Mycobacterium tuberculosis.
Cell. Immunol.
258
:
29
37
.
75
Court
N.
,
Vasseur
V.
,
Vacher
R.
,
Frémond
C.
,
Shebzukhov
Y.
,
Yeremeev
V. V.
,
Maillet
I.
,
Nedospasov
S. A.
,
Gordon
S.
,
Fallon
P. G.
, et al
.
2010
.
Partial redundancy of the pattern recognition receptors, scavenger receptors, and C-type lectins for the long-term control of Mycobacterium tuberculosis infection.
J. Immunol.
184
:
7057
7070
.
76
Shimaoka
T.
,
Kume
N.
,
Minami
M.
,
Hayashida
K.
,
Sawamura
T.
,
Kita
T.
,
Yonehara
S.
.
2001
.
LOX-1 supports adhesion of Gram-positive and Gram-negative bacteria.
J. Immunol.
166
:
5108
5114
.
77
Zhang
P.
,
Liu
M. C.
,
Cheng
L.
,
Liang
M.
,
Ji
H. L.
,
Fu
J.
.
2009
.
Blockade of LOX-1 prevents endotoxin-induced acute lung inflammation and injury in mice.
J. Innate Immun.
1
:
358
365
.
78
Dieudonné
A.
,
Torres
D.
,
Blanchard
S.
,
Taront
S.
,
Jeannin
P.
,
Delneste
Y.
,
Pichavant
M.
,
Trottein
F.
,
Gosset
P.
.
2012
.
Scavenger receptors in human airway epithelial cells: role in response to double-stranded RNA.
PLoS ONE
7
:
e41952
.
79
Shimaoka
T.
,
Kume
N.
,
Minami
M.
,
Hayashida
K.
,
Kataoka
H.
,
Kita
T.
,
Yonehara
S.
.
2000
.
Molecular cloning of a novel scavenger receptor for oxidized low density lipoprotein, SR-PSOX, on macrophages.
J. Biol. Chem.
275
:
40663
40666
.
80
Matloubian
M.
,
David
A.
,
Engel
S.
,
Ryan
J. E.
,
Cyster
J. G.
.
2000
.
A transmembrane CXC chemokine is a ligand for HIV-coreceptor Bonzo.
Nat. Immunol.
1
:
298
304
.
81
Lee
L. N.
,
Ronan
E. O.
,
de Lara
C.
,
Franken
K. L.
,
Ottenhoff
T. H.
,
Tchilian
E. Z.
,
Beverley
P. C.
.
2011
.
CXCR6 is a marker for protective antigen-specific cells in the lungs after intranasal immunization against Mycobacterium tuberculosis.
Infect. Immun.
79
:
3328
3337
.
82
Germanov
E.
,
Veinotte
L.
,
Cullen
R.
,
Chamberlain
E.
,
Butcher
E. C.
,
Johnston
B.
.
2008
.
Critical role for the chemokine receptor CXCR6 in homeostasis and activation of CD1d-restricted NKT cells.
J. Immunol.
181
:
81
91
.
83
Olszak
T.
,
An
D.
,
Zeissig
S.
,
Vera
M. P.
,
Richter
J.
,
Franke
A.
,
Glickman
J. N.
,
Siebert
R.
,
Baron
R. M.
,
Kasper
D. L.
,
Blumberg
R. S.
.
2012
.
Microbial exposure during early life has persistent effects on natural killer T cell function.
Science
336
:
489
493
.
84
Bartlett
J. A.
,
Fischer
A. J.
,
McCray
P. B.
 Jr.
2008
.
Innate immune functions of the airway epithelium.
Contrib. Microbiol.
15
:
147
163
.
85
Sanders
C. J.
,
Doherty
P. C.
,
Thomas
P. G.
.
2011
.
Respiratory epithelial cells in innate immunity to influenza virus infection.
Cell Tissue Res.
343
:
13
21
.
86
Chuquimia
O. D.
,
Petursdottir
D. H.
,
Periolo
N.
,
Fernández
C.
.
2013
.
Alveolar epithelial cells are critical in protection of the respiratory tract by secretion of factors able to modulate the activity of pulmonary macrophages and directly control bacterial growth.
Infect. Immun.
81
:
381
389
.
87
Adler
K. B.
,
Tuvim
M. J.
,
Dickey
B. F.
.
2013
.
Regulated mucin secretion from airway epithelial cells.
Front. Endocrinol. (Lausanne)
4
:
129
.
88
Rada
B.
,
Leto
T. L.
.
2008
.
Oxidative innate immune defenses by Nox/Duox family NADPH oxidases.
Contrib. Microbiol.
15
:
164
187
.
89
Vareille
M.
,
Kieninger
E.
,
Edwards
M. R.
,
Regamey
N.
.
2011
.
The airway epithelium: soldier in the fight against respiratory viruses.
Clin. Microbiol. Rev.
24
:
210
229
.
90
Sajjan
U. S.
2013
.
Susceptibility to viral infections in chronic obstructive pulmonary disease: role of epithelial cells.
Curr. Opin. Pulm. Med.
19
:
125
132
.
91
John
G.
,
Yildirim
A. O.
,
Rubin
B. K.
,
Gruenert
D. C.
,
Henke
M. O.
.
2010
.
TLR-4-mediated innate immunity is reduced in cystic fibrosis airway cells.
Am. J. Respir. Cell Mol. Biol.
42
:
424
431
.
92
Parker, D., and A. Prince. 2013. Epithelial uptake of flagella initiates proinflammatory signaling. PLoS One 8: e59932
.
93
Xie
X. H.
,
Law
H. K.
,
Wang
L. J.
,
Li
X.
,
Yang
X. Q.
,
Liu
E. M.
.
2009
.
Lipopolysaccharide induces IL-6 production in respiratory syncytial virus-infected airway epithelial cells through the toll-like receptor 4 signaling pathway.
Pediatr. Res.
65
:
156
162
.
94
Hussell
T.
,
Bell
T. J.
.
2014
.
Alveolar macrophages: plasticity in a tissue-specific context.
Nat. Rev. Immunol.
14
:
81
93
.
95
Hiraiwa
K.
,
van Eeden
S. F.
.
2013
.
Contribution of lung macrophages to the inflammatory responses induced by exposure to air pollutants.
Mediators Inflamm.
2013
:
619523
.
96
Sica
A.
,
Mantovani
A.
.
2012
.
Macrophage plasticity and polarization: in vivo veritas.
J. Clin. Invest.
122
:
787
795
.
97
Boorsma
C. E.
,
Draijer
C.
,
Melgert
B. N.
.
2013
.
Macrophage heterogeneity in respiratory diseases.
Mediators Inflamm.
2013
:
769214
.
98
Landsman
L.
,
Jung
S.
.
2007
.
Lung macrophages serve as obligatory intermediate between blood monocytes and alveolar macrophages.
J. Immunol.
179
:
3488
3494
.
99
Guilliams
M.
,
De Kleer
I.
,
Henri
S.
,
Post
S.
,
Vanhoutte
L.
,
De Prijck
S.
,
Deswarte
K.
,
Malissen
B.
,
Hammad
H.
,
Lambrecht
B. N.
.
2013
.
Alveolar macrophages develop from fetal monocytes that differentiate into long-lived cells in the first week of life via GM-CSF.
J. Exp. Med.
210
:
1977
1992
.
100
Yona
S.
,
Kim
K. W.
,
Wolf
Y.
,
Mildner
A.
,
Varol
D.
,
Breker
M.
,
Strauss-Ayali
D.
,
Viukov
S.
,
Guilliams
M.
,
Misharin
A.
, et al
.
2013
.
Fate mapping reveals origins and dynamics of monocytes and tissue macrophages under homeostasis.
Immunity
38
:
79
91
.
101
Jenkins
S. J.
,
Ruckerl
D.
,
Cook
P. C.
,
Jones
L. H.
,
Finkelman
F. D.
,
van Rooijen
N.
,
MacDonald
A. S.
,
Allen
J. E.
.
2011
.
Local macrophage proliferation, rather than recruitment from the blood, is a signature of TH2 inflammation.
Science
332
:
1284
1288
.
102
Empey
K. M.
,
Hollifield
M.
,
Garvy
B. A.
.
2007
.
Exogenous heat-killed Escherichia coli improves alveolar macrophage activity and reduces Pneumocystis carinii lung burden in infant mice.
Infect. Immun.
75
:
3382
3393
.
103
Mircescu
M. M.
,
Lipuma
L.
,
van Rooijen
N.
,
Pamer
E. G.
,
Hohl
T. M.
.
2009
.
Essential role for neutrophils but not alveolar macrophages at early time points following Aspergillus fumigatus infection.
J. Infect. Dis.
200
:
647
656
.
104
Moreno
G.
,
Errea
A.
,
Van Maele
L.
,
Roberts
R.
,
Léger
H.
,
Sirard
J. C.
,
Benecke
A.
,
Rumbo
M.
,
Hozbor
D.
.
2013
.
Toll-like receptor 4 orchestrates neutrophil recruitment into airways during the first hours of Bordetella pertussis infection.
Microbes Infect.
15
:
708
718
.
105
Young
R. L.
,
Malcolm
K. C.
,
Kret
J. E.
,
Caceres
S. M.
,
Poch
K. R.
,
Nichols
D. P.
,
Taylor-Cousar
J. L.
,
Saavedra
M. T.
,
Randell
S. H.
,
Vasil
M. L.
, et al
.
2011
.
Neutrophil extracellular trap (NET)-mediated killing of Pseudomonas aeruginosa: evidence of acquired resistance within the CF airway, independent of CFTR.
PLoS ONE
6
:
e23637
.
106
Hahn
I.
,
Klaus
A.
,
Janze
A. K.
,
Steinwede
K.
,
Ding
N.
,
Bohling
J.
,
Brumshagen
C.
,
Serrano
H.
,
Gauthier
F.
,
Paton
J. C.
, et al
.
2011
.
Cathepsin G and neutrophil elastase play critical and nonredundant roles in lung-protective immunity against Streptococcus pneumoniae in mice.
Infect. Immun.
79
:
4893
4901
.
107
Cai
S.
,
Batra
S.
,
Lira
S. A.
,
Kolls
J. K.
,
Jeyaseelan
S.
.
2010
.
CXCL1 regulates pulmonary host defense to Klebsiella Infection via CXCL2, CXCL5, NF-kappaB, and MAPKs.
J. Immunol.
185
:
6214
6225
.
108
Cowburn
A. S.
,
Condliffe
A. M.
,
Farahi
N.
,
Summers
C.
,
Chilvers
E. R.
.
2008
.
Advances in neutrophil biology: clinical implications.
Chest
134
:
606
612
.
109
Hahn
S.
,
Giaglis
S.
,
Chowdhury
C. S.
,
Hösli
I.
,
Hasler
P.
.
2013
.
Modulation of neutrophil NETosis: interplay between infectious agents and underlying host physiology.
[Published erratum appears in 2013 Semin. Immunopathol. 35: 531.]
Semin. Immunopathol.
35
:
439
453
.
110
Guilliams
M.
,
Lambrecht
B. N.
,
Hammad
H.
.
2013
.
Division of labor between lung dendritic cells and macrophages in the defense against pulmonary infections.
Mucosal Immunol.
6
:
464
473
.
111
Lambrecht
B. N.
,
Hammad
H.
.
2012
.
Lung dendritic cells in respiratory viral infection and asthma: from protection to immunopathology.
Annu. Rev. Immunol.
30
:
243
270
.
112
Helft
J.
,
Manicassamy
B.
,
Guermonprez
P.
,
Hashimoto
D.
,
Silvin
A.
,
Agudo
J.
,
Brown
B. D.
,
Schmolke
M.
,
Miller
J. C.
,
Leboeuf
M.
, et al
.
2012
.
Cross-presenting CD103+ dendritic cells are protected from influenza virus infection.
J. Clin. Invest.
122
:
4037
4047
.
113
Davidson
S.
,
Kaiko
G.
,
Loh
Z.
,
Lalwani
A.
,
Zhang
V.
,
Spann
K.
,
Foo
S. Y.
,
Hansbro
N.
,
Uematsu
S.
,
Akira
S.
, et al
.
2011
.
Plasmacytoid dendritic cells promote host defense against acute pneumovirus infection via the TLR7-MyD88-dependent signaling pathway.
J. Immunol.
186
:
5938
5948
.
114
Schreiber
H. A.
,
Harding
J. S.
,
Hunt
O.
,
Altamirano
C. J.
,
Hulseberg
P. D.
,
Stewart
D.
,
Fabry
Z.
,
Sandor
M.
.
2011
.
Inflammatory dendritic cells migrate in and out of transplanted chronic mycobacterial granulomas in mice.
J. Clin. Invest.
121
:
3902
3913
.
115
Vantourout
P.
,
Hayday
A.
.
2013
.
Six-of-the-best: unique contributions of γδ T cells to immunology.
Nat. Rev. Immunol.
13
:
88
100
.
116
Prinz
I.
,
Silva-Santos
B.
,
Pennington
D. J.
.
2013
.
Functional development of γδ T cells.
Eur. J. Immunol.
43
:
1988
1994
.
117
Augustin
A.
,
Kubo
R. T.
,
Sim
G. K.
.
1989
.
Resident pulmonary lymphocytes expressing the gamma/delta T-cell receptor.
Nature
340
:
239
241
.
118
Moore
T. A.
,
Moore
B. B.
,
Newstead
M. W.
,
Standiford
T. J.
.
2000
.
Gamma delta-T cells are critical for survival and early proinflammatory cytokine gene expression during murine Klebsiella pneumonia.
J. Immunol.
165
:
2643
2650
.
119
Saunders
B. M.
,
Frank
A. A.
,
Cooper
A. M.
,
Orme
I. M.
.
1998
.
Role of gamma delta T cells in immunopathology of pulmonary Mycobacterium avium infection in mice.
Infect. Immun.
66
:
5508
5514
.
120
Cheng
P.
,
Liu
T.
,
Zhou
W. Y.
,
Zhuang
Y.
,
Peng
L. S.
,
Zhang
J. Y.
,
Yin
Z. N.
,
Mao
X. H.
,
Guo
G.
,
Shi
Y.
,
Zou
Q. M.
.
2012
.
Role of gamma-delta T cells in host response against Staphylococcus aureus-induced pneumonia.
BMC Immunol.
13
:
38
.
121
Nakasone
C.
,
Yamamoto
N.
,
Nakamatsu
M.
,
Kinjo
T.
,
Miyagi
K.
,
Uezu
K.
,
Nakamura
K.
,
Higa
F.
,
Ishikawa
H.
,
O’Brien
R. L.
, et al
.
2007
.
Accumulation of gamma/delta T cells in the lungs and their roles in neutrophil-mediated host defense against pneumococcal infection.
Microbes Infect.
9
:
251
258
.
122
Romani
L.
,
Fallarino
F.
,
De Luca
A.
,
Montagnoli
C.
,
D’Angelo
C.
,
Zelante
T.
,
Vacca
C.
,
Bistoni
F.
,
Fioretti
M. C.
,
Grohmann
U.
, et al
.
2008
.
Defective tryptophan catabolism underlies inflammation in mouse chronic granulomatous disease.
Nature
451
:
211
215
.
123
Wozniak
K. L.
,
Kolls
J. K.
,
Wormley
F. L.
 Jr.
2012
.
Depletion of neutrophils in a protective model of pulmonary cryptococcosis results in increased IL-17A production by γδ T cells.
BMC Immunol.
13
:
65
.
124
Spits
H.
,
Artis
D.
,
Colonna
M.
,
Diefenbach
A.
,
Di Santo
J. P.
,
Eberl
G.
,
Koyasu
S.
,
Locksley
R. M.
,
McKenzie
A. N.
,
Mebius
R. E.
, et al
.
2013
.
Innate lymphoid cells—a proposal for uniform nomenclature.
Nat. Rev. Immunol.
13
:
145
149
.
125
Neill
D. R.
,
Wong
S. H.
,
Bellosi
A.
,
Flynn
R. J.
,
Daly
M.
,
Langford
T. K.
,
Bucks
C.
,
Kane
C. M.
,
Fallon
P. G.
,
Pannell
R.
, et al
.
2010
.
Nuocytes represent a new innate effector leukocyte that mediates type-2 immunity.
Nature
464
:
1367
1370
.
126
Moro
K.
,
Yamada
T.
,
Tanabe
M.
,
Takeuchi
T.
,
Ikawa
T.
,
Kawamoto
H.
,
Furusawa
J.
,
Ohtani
M.
,
Fujii
H.
,
Koyasu
S.
.
2010
.
Innate production of T(H)2 cytokines by adipose tissue-associated c-Kit(+)Sca-1(+) lymphoid cells.
Nature
463
:
540
544
.
127
Fort
M. M.
,
Cheung
J.
,
Yen
D.
,
Li
J.
,
Zurawski
S. M.
,
Lo
S.
,
Menon
S.
,
Clifford
T.
,
Hunte
B.
,
Lesley
R.
, et al
.
2001
.
IL-25 induces IL-4, IL-5, and IL-13 and Th2-associated pathologies in vivo.
Immunity
15
:
985
995
.
128
Price
A. E.
,
Liang
H. E.
,
Sullivan
B. M.
,
Reinhardt
R. L.
,
Eisley
C. J.
,
Erle
D. J.
,
Locksley
R. M.
.
2010
.
Systemically dispersed innate IL-13-expressing cells in type 2 immunity.
Proc. Natl. Acad. Sci. USA
107
:
11489
11494
.
129
Monticelli
L. A.
,
Sonnenberg
G. F.
,
Abt
M. C.
,
Alenghat
T.
,
Ziegler
C. G.
,
Doering
T. A.
,
Angelosanto
J. M.
,
Laidlaw
B. J.
,
Yang
C. Y.
,
Sathaliyawala
T.
, et al
.
2011
.
Innate lymphoid cells promote lung-tissue homeostasis after infection with influenza virus.
Nat. Immunol.
12
:
1045
1054
.
130
Barlow
J. L.
,
Peel
S.
,
Fox
J.
,
Panova
V.
,
Hardman
C. S.
,
Camelo
A.
,
Bucks
C.
,
Wu
X.
,
Kane
C. M.
,
Neill
D. R.
, et al
.
2013
.
IL-33 is more potent than IL-25 in provoking IL-13-producing nuocytes (type 2 innate lymphoid cells) and airway contraction.
J. Allergy Clin. Immunol.
132
:
933
941
.
131
Van Maele, L., C. Carnoy, D. Cayet, S. Ivanov, R. Porte, E. Deruy, J. A. Chabalgoity, J. C. Renauld, G. Eberl, A. G. Benecke, et al. 2014. Activation of Type 3 innate lymphoid cells and interleukin 22 secretion in the lungs during Streptococcus pneumoniae infection. J. Infect. Dis. 210: 493–503
.
132
Taube
C.
,
Tertilt
C.
,
Gyülveszi
G.
,
Dehzad
N.
,
Kreymborg
K.
,
Schneeweiss
K.
,
Michel
E.
,
Reuter
S.
,
Renauld
J. C.
,
Arnold-Schild
D.
, et al
.
2011
.
IL-22 is produced by innate lymphoid cells and limits inflammation in allergic airway disease.
PLoS ONE
6
:
e21799
.
133
Kim
H. Y.
,
Lee
H. J.
,
Chang
Y. J.
,
Pichavant
M.
,
Shore
S. A.
,
Fitzgerald
K. A.
,
Iwakura
Y.
,
Israel
E.
,
Bolger
K.
,
Faul
J.
, et al
.
2014
.
Interleukin-17-producing innate lymphoid cells and the NLRP3 inflammasome facilitate obesity-associated airway hyperreactivity.
Nat. Med.
20
:
54
61
.
134
Rotta Detto Loria
J.
,
Rohmann
K.
,
Droemann
D.
,
Kujath
P.
,
Rupp
J.
,
Goldmann
T.
,
Dalhoff
K.
.
2013
.
Nontypeable Haemophilus influenzae Infection Upregulates the NLRP3 Inflammasome and Leads to Caspase-1-Dependent Secretion of Interleukin-1β - A Possible Pathway of Exacerbations in COPD.
PLoS ONE
8
:
e66818
.
135
Bartziokas
K.
,
Papaioannou
A. I.
,
Loukides
S.
,
Papadopoulos
A.
,
Haniotou
A.
,
Papiris
S.
,
Kostikas
K.
.
2014
.
Serum uric acid as a predictor of mortality and future exacerbations of COPD.
Eur. Respir. J.
43
:
43
53
.
136
Martinon
F.
,
Pétrilli
V.
,
Mayor
A.
,
Tardivel
A.
,
Tschopp
J.
.
2006
.
Gout-associated uric acid crystals activate the NALP3 inflammasome.
Nature
440
:
237
241
.
137
Weidinger
S.
,
Klopp
N.
,
Rummler
L.
,
Wagenpfeil
S.
,
Novak
N.
,
Baurecht
H. J.
,
Groer
W.
,
Darsow
U.
,
Heinrich
J.
,
Gauger
A.
, et al
.
2005
.
Association of NOD1 polymorphisms with atopic eczema and related phenotypes.
J. Allergy Clin. Immunol.
116
:
177
184
.
138
Kabesch
M.
,
Peters
W.
,
Carr
D.
,
Leupold
W.
,
Weiland
S. K.
,
von Mutius
E.
.
2003
.
Association between polymorphisms in caspase recruitment domain containing protein 15 and allergy in two German populations.
J. Allergy Clin. Immunol.
111
:
813
817
.
139
Ohar
J. A.
,
Hamilton
R. F.
 Jr
,
Zheng
S.
,
Sadeghnejad
A.
,
Sterling
D. A.
,
Xu
J.
,
Meyers
D. A.
,
Bleecker
E. R.
,
Holian
A.
.
2010
.
COPD is associated with a macrophage scavenger receptor-1 gene sequence variation.
Chest
137
:
1098
1107
.
140
Thomsen
M.
,
Nordestgaard
B. G.
,
Tybjaerg-Hansen
A.
,
Dahl
M.
.
2011
.
Scavenger receptor AI/II truncation, lung function and COPD: a large population-based study.
J. Intern. Med.
269
:
340
348
.
141
Freeman
C. M.
,
Curtis
J. L.
,
Chensue
S. W.
.
2007
.
CC chemokine receptor 5 and CXC chemokine receptor 6 expression by lung CD8+ cells correlates with chronic obstructive pulmonary disease severity.
Am. J. Pathol.
171
:
767
776
.
142
Urboniene
D.
,
Babusyte
A.
,
Lötvall
J.
,
Sakalauskas
R.
,
Sitkauskiene
B.
.
2013
.
Distribution of γδ and other T-lymphocyte subsets in patients with chronic obstructive pulmonary disease and asthma.
Respir. Med.
107
:
413
423
.
143
Fahy
J. V.
,
Dickey
B. F.
.
2010
.
Airway mucus function and dysfunction.
N. Engl. J. Med.
363
:
2233
2247
.
144
Hayes
E.
,
Pohl
K.
,
McElvaney
N. G.
,
Reeves
E. P.
.
2011
.
The cystic fibrosis neutrophil: a specialized yet potentially defective cell.
Arch. Immunol. Ther. Exp. (Warsz.)
59
:
97
112
.
145
Hoenderdos
K.
,
Condliffe
A.
.
2013
.
The neutrophil in chronic obstructive pulmonary disease.
Am. J. Respir. Cell Mol. Biol.
48
:
531
539
.
146
Mizgerd
J. P.
2008
.
Acute lower respiratory tract infection.
N. Engl. J. Med.
358
:
716
727
.

The authors have no financial conflicts of interest.