Rheumatoid arthritis (RA) was one of the first diseases to be classified as autoimmune, based on the prevalence of an autoantibody, rheumatoid factor, which was first identified in the 1940s. However, the diagnostic value and pathogenic significance of rheumatoid factor have been constrained by its striking nonspecificity for RA, in view of its presence in many other chronic diseases and in large numbers of apparently healthy individuals, especially the elderly. Beginning in the 1960s, other autoantibody specificities were described in RA, primarily in immunofluorescence assays. These were termed “anti–perinuclear factor” or “anti-keratin” Abs, and a subset of these were found to react with fillagrin. These autoantibodies were proposed to be more specific for RA than was rheumatoid factor, but the nature of the epitope recognized was unclear.

In a landmark paper published in 1998 in the Journal of Clinical Investigation, Schellekens et al. (1) from the laboratory of Walther J. van Venrooij in Nijmegen showed that the unconventional amino acid citrulline was an essential component of the determinant recognized by anti-fillagrin autoantibodies in RA. This paper, thus far cited well over 500 times, has opened a new era in the diagnosis and classification of RA and has led to important new insights into RA pathogenesis and the role of posttranslational modifications of proteins in autoantigenicity. Citrullination of a variety of proteins is emerging as an essential component of inflammation in a variety of diseases; thus, both alteration of protein functions by citrullination and the interactions of anti-citrulline autoantibodies with these proteins now command increased attention in efforts to understand the etiology and pathogenesis of RA. Citrullination and autoantibodies to citrulline-containing proteins also provided early biomarkers of preclinical RA that now allow testing of strategies to prevent RA.

Citrulline is an amino acid that is not encoded in the genome, but is instead created by posttranslational modification of arginine residues in proteins, catalyzed by the enzyme peptidyl arginine deiminase (PAD), which exists in several isoforms (2). A wide variety of proteins can be citrullinated, including histones, cell surface receptors, and extracellular connective tissue components. Citrullination turns out to be essential for many important biological processes, for example neutrophil NETosis, which depends on citrullination of histones.

Schellekens et al. (1) synthesized a variety of peptides corresponding to potential immunogenic epitopes of fillagrin, substituting citrulline for arginine in some of the peptides. Using immunoblotting, they showed that most of the anti-fillagrin reactivity in RA sera depended on the presence of citrulline instead of arginine. They then affinity purified citrulline-reactive autoantibodies from these RA sera and demonstrated that these autoantibodies were reactive in the immunofluorescence assays that had been used to describe “anti–perinuclear factor” and “anti-keratin” specificities. Moreover, they showed that anti-citrulline autoantibodies were present in 76% of RA sera but in <5% of sera from control groups, including patients with other autoimmune diseases (1). Multiple citrullinated peptide epitopes of fillagrin were recognized by the RA sera, foreshadowing subsequent demonstrations that a wide array of citrullinated proteins is recognized by RA-associated autoantibodies.

ACPA and anti-CCP are abbreviations commonly used to refer to anti-citrullinated protein Abs that are measured in widely available clinical laboratory assays. ACPAs can react with a variety of citrullinated proteins, such as vimentin, fibrinogen, α enolase, fillagrin, and type II collagen (3, 4). Most clinical assays currently in use employ cyclic citrullinated peptides as the target Ag, which may lead to a small percentage of false-negative results (5, 6). The level of sensitivity and specificity of anti-citrulline positivity reported in the 1998 Journal of Clinical Investigation paper (1) has held up well during the subsequent 17 years. Occasionally, tests for ACPAs are positive in patients with tuberculosis (7), but the specificity for RA has led to the incorporation of ACPAs into criteria for the classification of RA, which can also be used for early diagnosis of RA (8). ACPA positivity predicts more severe disease as defined by greater destruction of cartilage and bone (912), and RA patients are now commonly subdivided into those who are ACPA+ versus ACPA. ACPA is superior to rheumatoid factor as a predictor of RA severity in the joints, but rheumatoid factor is more tightly associated with extra-articular manifestations such as rheumatoid nodules (1315). Increased mortality in RA is most prominent in patients with both rheumatoid factor and ACPAs (16). Given all of this information, the presence of ACPAs is viewed as an indication for more aggressive management of patients with RA (17).

Citrullination of proteins is widespread in inflamed tissue, for example in synovial tissue in both RA and other arthritides (18). Thus, proinflammatory effects of citrullination that are independent of ACPAs could influence RA and many other diseases. Indeed, in the mouse RA model of collagen-induced arthritis, inhibition of PAD reduces disease severity even though collagen-induced arthritis is not dependent on ACPAs (19). Inhibition of PAD also reduces vascular damage in a murine model of systemic lupus (20).

In another experimental system, it was shown that the chemokine CXCL5, when citrullinated, acquires the ability to bind to CXCR1 and CXCR2, which enables it to attract monocytes and enhance joint inflammation (21). Additionally, citrullination of calreticulin enhances the ability of this molecule to function as a receptor for the RA-associated MHC allele that is termed the shared epitope. This binding interaction is a novel mechanism for the shared epitope to enhance joint inflammation and damage that is distinct from the Ag-presenting function of MHC molecules (22).

Whereas ACPAs contribute to joint inflammation by forming immune complexes and engaging Fc receptors (23), citrullination can also contribute specifically to the pathogenesis of RA through unique mechanisms that depend on ACPAs binding to their citrullinated targets. For example, ACPAs that bind to citrullinated vimentin on the surface of osteoclasts activate the osteoclasts to promote bone resorption (24). This mechanism may explain the observation that osteopenia is present in ACPA+ individuals who do not yet have clinical RA (25). ACPAs also affect NETosis of neutrophils, a process that is enhanced in RA. NETs contain citrullinated Ags, and ACPAs not only bind to NETs but also enhance the rate of NETosis. NETs can directly activate synovial fibroblasts to secrete proinflammatory cytokines (26). Patients with RA can also have autoantibodies to PAD, which, remarkably, activate the PAD enzyme to augment citrullination (27). Taken together, these and other observations reveal a complex and interacting series of mechanisms through which targeted citrullination of proteins enhances inflammatory pathways, and the presence of ACPAs confers unique additional augmentation of proinflammatory and tissue-destructive processes.

In patients with early undifferentiated arthritis, ACPAs are a powerful predictor of progression to frank RA (28). Moreover, ACPAs are found in serum up to 10 years before the onset of RA (29), at a time when synovitis and citrullination of synovial proteins are not evident (30). In pre-RA, ACPAs already exhibit a pattern of decreased galactosylation that has been found in total IgG in active RA (31). The presence of ACPAs is associated with the shared epitope HLA-DR allele that is the most important genetic risk factor for RA (32), and is also associated with two other established risk factors for RA, smoking and periodontitis (33). These observations have led to hypotheses that the formation of ACPAs provides a link between the risk factors for RA and the pathway that ultimately leads to clinical arthritis. Notably, smoking can lead to formation of citrullinated proteins in the lung, the presence of ACPAs is associated with lung inflammation in RA, and ACPAs can be measured in sputum not only in those with RA, but even in individuals at risk for RA who do not yet have ACPAs in their serum (3438). Periodontitis, which is bidirectionally associated with RA, is driven by the bacterium Porphyromonas gingivalis, which uniquely among oral flora expresses PAD and thus generates local protein citrullination, leading to formation of ACPAs (33, 3941). These findings give important momentum to the notion that RA begins in organs and tissues other than the joints, such as the lung or periodontal tissue, with citrullination and ACPA formation being early and critical events in its pathogenesis. Given that ACPAs can be a very early biomarker for pre-RA and are present in some first-degree relatives of RA patients (who are known to have an increased risk for developing RA) (42), trials for prevention of RA can now be designed around the measurement of ACPAs and ACPA-triggered inflammatory pathways.

The discovery of ACPAs by van Venrooij’s group was a landmark event that has changed our approach to the diagnosis, classification, and management of RA, an autoimmune disease that has enormous impact on millions of people. It also has opened up new understanding of the pathogenesis of RA and may be getting us closer to grasping the etiology of RA and strategies for prevention. Moreover, conversion of arginine to citrulline turns out not to be the only posttranslational protein modification that engenders autoimmunity: carbamylation (43) and formation of malondialdehyde–acetaldehyde adducts (44) are other examples of posttranslational modifications that are recognized by recently defined RA-associated autoantibodies. Important questions remain for immunologists regarding how posttranslationally modified proteins are handled and recognized during immune repertoire selection and at peripheral checkpoints for establishment or maintenance of tolerance to these determinants.

Abbreviations used in this article:

ACPA

anti-citrullinated protein Ab

PAD

peptidyl arginine deiminase

RA

rheumatoid arthritis.

1
Schellekens
G. A.
,
de Jong
B. A.
,
van den Hoogen
F. H.
,
van de Putte
L. B.
,
van Venrooij
W. J.
.
1998
.
Citrulline is an essential constituent of antigenic determinants recognized by rheumatoid arthritis-specific autoantibodies
.
J. Clin. Invest.
101
:
273
281
.
2
van Boekel
M. A. M.
,
van Venrooij
W. J.
.
2003
.
Modifications of arginines and their role in autoimmunity
.
Autoimmun. Rev.
2
:
57
62
.
3
van Beers
J. J.
,
Willemze
A.
,
Jansen
J. J.
,
Engbers
G. H.
,
Salden
M.
,
Raats
J.
,
Drijfhout
J. W.
,
van der Helm-van Mil
A. H.
,
Toes
R. E.
,
Pruijn
G. J.
.
2013
.
ACPA fine-specificity profiles in early rheumatoid arthritis patients do not correlate with clinical features at baseline or with disease progression
.
Arthritis Res. Ther.
15
:
R140
.
4
Szarka
E.
,
Babos
F.
,
Magyar
A.
,
Huber
K.
,
Szittner
Z.
,
Papp
K.
,
Prechl
J.
,
Pozsgay
J.
,
Neer
Z.
,
Ádori
M.
, et al
.
2014
.
Recognition of new citrulline-containing peptide epitopes by autoantibodies produced in vivo and in vitro by B cells of rheumatoid arthritis patients
.
Immunology
141
:
181
191
.
5
Wagner
C. A.
,
Sokolove
J.
,
Lahey
L. J.
,
Bengtsson
C.
,
Saevarsdottir
S.
,
Alfredsson
L.
,
Delanoy
M.
,
Lindstrom
T. M.
,
Walker
R. P.
,
Bromberg
R.
, et al
.
2015
.
Identification of anticitrullinated protein antibody reactivities in a subset of anti-CCP-negative rheumatoid arthritis: association with cigarette smoking and HLA-DRB1 “shared epitope” alleles
.
Ann. Rheum. Dis.
74
:
579
586
.
6
Montgomery
A. B.
,
Venables
P. J.
,
Fisher
B. A.
.
2013
.
The case for measuring antibodies to specific citrullinated antigens
.
Expert Rev. Clin. Immunol.
9
:
1185
1192
.
7
Lima
I.
,
Oliveira
R. C.
,
Atta
A.
,
Marchi
S.
,
Barbosa
L.
,
Reis
E.
,
Reis
M. G.
,
Santiago
M. B.
.
2013
.
Antibodies to citrullinated peptides in tuberculosis
.
Clin. Rheumatol.
32
:
685
687
.
8
Aletaha
D.
,
Neogi
T.
,
Silman
A. J.
,
Funovits
J.
,
Felson
D. T.
,
Bingham
C. O.
 III
,
Birnbaum
N. S.
,
Burmester
G. R.
,
Bykerk
V. P.
,
Cohen
M. D.
, et al
.
2010
.
2010 rheumatoid arthritis classification criteria: an American College of Rheumatology/European League Against Rheumatism collaborative initiative
.
Ann. Rheum. Dis.
69
:
1580
1588
.
9
Kroot
E. J.
,
de Jong
B. A.
,
van Leeuwen
M. A.
,
Swinkels
H.
,
van den Hoogen
F. H.
,
van’t Hof
M.
,
van de Putte
L. B.
,
van Rijswijk
M. H.
,
van Venrooij
W. J.
,
van Riel
P. L.
.
2000
.
The prognostic value of anti-cyclic citrullinated peptide antibody in patients with recent-onset rheumatoid arthritis
.
Arthritis Rheum.
43
:
1831
1835
.
10
van der Linden
M. P.
,
van der Woude
D.
,
Ioan-Facsinay
A.
,
Levarht
E. W.
,
Stoeken-Rijsbergen
G.
,
Huizinga
T. W.
,
Toes
R. E.
,
van der Helm-van Mil
A. H.
.
2009
.
Value of anti-modified citrullinated vimentin and third-generation anti-cyclic citrullinated peptide compared with second-generation anti-cyclic citrullinated peptide and rheumatoid factor in predicting disease outcome in undifferentiated arthritis and rheumatoid arthritis
.
Arthritis Rheum.
60
:
2232
2241
.
11
Renner
N.
,
Krönke
G.
,
Rech
J.
,
Uder
M.
,
Janka
R.
,
Lauer
L.
,
Paul
D.
,
Herz
B.
,
Schlechtweg
P.
,
Hennig
F. F.
, et al
.
2014
.
Anti-citrullinated protein antibody positivity correlates with cartilage damage and proteoglycan levels in patients with rheumatoid arthritis in the hand joints
.
Arthritis Rheum. (Munch)
66
:
3283
3288
.
12
Lindqvist
E.
,
Eberhardt
K.
,
Bendtzen
K.
,
Heinegård
D.
,
Saxne
T.
.
2005
.
Prognostic laboratory markers of joint damage in rheumatoid arthritis
.
Ann. Rheum. Dis.
64
:
196
201
.
13
Kastbom
A.
,
Strandberg
G.
,
Lindroos
A.
,
Skogh
T.
.
2004
.
Anti-CCP antibody test predicts the disease course during 3 years in early rheumatoid arthritis (the Swedish TIRA project)
.
Ann. Rheum. Dis.
63
:
1085
1089
.
14
De Rycke
L.
,
Peene
I.
,
Hoffman
I. E.
,
Kruithof
E.
,
Union
A.
,
Meheus
L.
,
Lebeer
K.
,
Wyns
B.
,
Vincent
C.
,
Mielants
H.
, et al
.
2004
.
Rheumatoid factor and anticitrullinated protein antibodies in rheumatoid arthritis: diagnostic value, associations with radiological progression rate, and extra-articular manifestations
.
Ann. Rheum. Dis.
63
:
1587
1593
.
15
Hecht
C.
,
Englbrecht
M.
,
Rech
J.
,
Schmidt
S.
,
Araujo
E.
,
Engelke
K.
,
Finzel
S.
,
Schett
G.
.
2014
.
Additive effect of anti-citrullinated protein antibodies and rheumatoid factor on bone erosions in patients with RA
.
Ann. Rheum. Dis.
DOI: 10.1136/annrheumdis-2014-205428.
16
Humphreys
J. H.
,
van Nies
J. A.
,
Chipping
J.
,
Marshall
T.
,
van der Helm-van Mil
A. H.
,
Symmons
D. P.
,
Verstappen
S. M.
.
2014
.
Rheumatoid factor and anti-citrullinated protein antibody positivity, but not level, are associated with increased mortality in patients with rheumatoid arthritis: results from two large independent cohorts
.
Arthritis Res. Ther.
16
:
483
.
17
Sakkas
L. I.
,
Bogdanos
D. P.
,
Katsiari
C.
,
Platsoucas
C. D.
.
2014
.
Anti-citrullinated peptides as autoantigens in rheumatoid arthritis-relevance to treatment
.
Autoimmun. Rev.
13
:
1114
1120
.
18
Vossenaar
E. R.
,
Smeets
T. J.
,
Kraan
M. C.
,
Raats
J. M.
,
van Venrooij
W. J.
,
Tak
P. P.
.
2004
.
The presence of citrullinated proteins is not specific for rheumatoid synovial tissue
.
Arthritis Rheum.
50
:
3485
3494
.
19
Willis
V. C.
,
Gizinski
A. M.
,
Banda
N. K.
,
Causey
C. P.
,
Knuckley
B.
,
Cordova
K. N.
,
Luo
Y.
,
Levitt
B.
,
Glogowska
M.
,
Chandra
P.
, et al
.
2011
.
N-α-benzoyl-N5-(2-chloro-1-iminoethyl)-l-ornithine amide, a protein arginine deiminase inhibitor, reduces the severity of murine collagen-induced arthritis
.
J. Immunol.
186
:
4396
4404
.
20
Knight
J. S.
,
Zhao
W.
,
Luo
W.
,
Subramanian
V.
,
O’Dell
A. A.
,
Yalavarthi
S.
,
Hodgin
J. B.
,
Eitzman
D. T.
,
Thompson
P. R.
,
Kaplan
M. J.
.
2013
.
Peptidylarginine deiminase inhibition is immunomodulatory and vasculoprotective in murine lupus
.
J. Clin. Invest.
123
:
2981
2993
.
21
Yoshida
K.
,
Korchynskyi
O.
,
Tak
P. P.
,
Isozaki
T.
,
Ruth
J. H.
,
Campbell
P. L.
,
Baeten
D. L.
,
Gerlag
D. M.
,
Amin
M. A.
,
Koch
A. E.
.
2014
.
Citrullination of epithelial neutrophil-activating peptide 78/CXCL5 results in conversion from a non-monocyte-recruiting chemokine to a monocyte-recruiting chemokine
.
Arthritis Rheum. (Munch)
66
:
2716
2727
.
22
Ling
S.
,
Cline
E. N.
,
Haug
T. S.
,
Fox
D. A.
,
Holoshitz
J.
.
2013
.
Citrullinated calreticulin potentiates rheumatoid arthritis shared epitope signaling
.
Arthritis Rheum.
65
:
618
626
.
23
van Venrooij
W. J.
,
van Beers
J. J.
,
Pruijn
G. J.
.
2011
.
Anti-CCP antibodies: the past, the present and the future
.
Nat Rev Rheumatol
7
:
391
398
.
24
Harre
U.
,
Georgess
D.
,
Bang
H.
,
Bozec
A.
,
Axmann
R.
,
Ossipova
E.
,
Jakobsson
P. J.
,
Baum
W.
,
Nimmerjahn
F.
,
Szarka
E.
, et al
.
2012
.
Induction of osteoclastogenesis and bone loss by human autoantibodies against citrullinated vimentin
.
J. Clin. Invest.
122
:
1791
1802
.
25
Kleyer
A.
,
Finzel
S.
,
Rech
J.
,
Manger
B.
,
Krieter
M.
,
Faustini
F.
,
Araujo
E.
,
Hueber
A. J.
,
Harre
U.
,
Engelke
K.
,
Schett
G.
.
2014
.
Bone loss before the clinical onset of rheumatoid arthritis in subjects with anticitrullinated protein antibodies
.
Ann. Rheum. Dis.
73
:
854
860
.
26
Khandpur
R.
,
Carmona-Rivera
C.
,
Vivekanandan-Giri
A.
,
Gizinski
A.
,
Yalavarthi
S.
,
Knight
J. S.
,
Friday
S.
,
Li
S.
,
Patel
R. M.
,
Subramanian
V.
, et al
.
2013
.
NETs are a source of citrullinated autoantigens and stimulate inflammatory responses in rheumatoid arthritis
.
Sci. Transl. Med.
5
:
178ra140
.
27
Darrah
E.
,
Giles
J. T.
,
Ols
M. L.
,
Bull
H. G.
,
Andrade
F.
,
Rosen
A.
.
2013
.
Erosive rheumatoid arthritis is associated with antibodies that activate PAD4 by increasing calcium sensitivity
.
Sci. Transl. Med.
5
:
186ra165
.
28
van Gaalen
F. A.
,
Linn-Rasker
S. P.
,
van Venrooij
W. J.
,
de Jong
B. A.
,
Breedveld
F. C.
,
Verweij
C. L.
,
Toes
R. E.
,
Huizinga
T. W.
.
2004
.
Autoantibodies to cyclic citrullinated peptides predict progression to rheumatoid arthritis in patients with undifferentiated arthritis: a prospective cohort study
.
Arthritis Rheum.
50
:
709
715
.
29
Arkema
E. V.
,
Goldstein
B. L.
,
Robinson
W.
,
Sokolove
J.
,
Wagner
C. A.
,
Malspeis
S.
,
Rosner
B.
,
Grodstein
F.
,
Karlson
E. W.
,
Costenbader
K. H.
.
2013
.
Anti-citrullinated peptide autoantibodies, human leukocyte antigen shared epitope and risk of future rheumatoid arthritis: a nested case-control study
.
Arthritis Res. Ther.
15
:
R159
.
30
de Hair
M. J.
,
van de Sande
M. G.
,
Ramwadhdoebe
T. H.
,
Hansson
M.
,
Landewé
R.
,
van der Leij
C.
,
Maas
M.
,
Serre
G.
,
van Schaardenburg
D.
,
Klareskog
L.
, et al
.
2014
.
Features of the synovium of individuals at risk of developing rheumatoid arthritis: implications for understanding preclinical rheumatoid arthritis
.
Arthritis Rheum. (Munch)
66
:
513
522
.
31
Rombouts
Y.
,
Ewing
E.
,
van de Stadt
L. A.
,
Selman
M. H.
,
Trouw
L. A.
,
Deelder
A. M.
,
Huizinga
T. W.
,
Wuhrer
M.
,
van Schaardenburg
D.
,
Toes
R. E.
,
Scherer
H. U.
.
2015
.
Anti-citrullinated protein antibodies acquire a pro-inflammatory Fc glycosylation phenotype prior to the onset of rheumatoid arthritis
.
Ann. Rheum. Dis.
74
:
234
241
.
32
van Gaalen
F. A.
,
van Aken
J.
,
Huizinga
T. W.
,
Schreuder
G. M.
,
Breedveld
F. C.
,
Zanelli
E.
,
van Venrooij
W. J.
,
Verweij
C. L.
,
Toes
R. E.
,
de Vries
R. R.
.
2004
.
Association between HLA class II genes and autoantibodies to cyclic citrullinated peptides (CCPs) influences the severity of rheumatoid arthritis
.
Arthritis Rheum.
50
:
2113
2121
.
33
Lappin
D. F.
,
Apatzidou
D.
,
Quirke
A. M.
,
Oliver-Bell
J.
,
Butcher
J. P.
,
Kinane
D. F.
,
Riggio
M. P.
,
Venables
P.
,
McInnes
I. B.
,
Culshaw
S.
.
2013
.
Influence of periodontal disease, Porphyromonas gingivalis and cigarette smoking on systemic anti-citrullinated peptide antibody titres
.
J. Clin. Periodontol.
40
:
907
915
.
34
Gizinski
A. M.
,
Mascolo
M.
,
Loucks
J. L.
,
Kervitsky
A.
,
Meehan
R. T.
,
Brown
K. K.
,
Holers
V. M.
,
Deane
K. D.
.
2009
.
Rheumatoid arthritis (RA)-specific autoantibodies in patients with interstitial lung disease and absence of clinically apparent articular RA
.
Clin. Rheumatol.
28
:
611
613
.
35
Willis
V. C.
,
Demoruelle
M. K.
,
Derber
L. A.
,
Chartier-Logan
C. J.
,
Parish
M. C.
,
Pedraza
I. F.
,
Weisman
M. H.
,
Norris
J. M.
,
Holers
V. M.
,
Deane
K. D.
.
2013
.
Sputum autoantibodies in patients with established rheumatoid arthritis and subjects at risk of future clinically apparent disease
.
Arthritis Rheum.
65
:
2545
2554
.
36
Reynisdottir
G.
,
Karimi
R.
,
Joshua
V.
,
Olsen
H.
,
Hensvold
A. H.
,
Harju
A.
,
Engström
M.
,
Grunewald
J.
,
Nyren
S.
,
Eklund
A.
, et al
.
2014
.
Structural changes and antibody enrichment in the lungs are early features of anti-citrullinated protein antibody-positive rheumatoid arthritis
.
Arthritis Rheumatol.
66
:
31
39
.
37
Perry
E.
,
Kelly
C.
,
Eggleton
P.
,
De Soyza
A.
,
Hutchinson
D.
.
2014
.
The lung in ACPA-positive rheumatoid arthritis: an initiating site of injury?
Rheumatology (Oxford)
53
:
1940
1950
.
38
Giles
J. T.
,
Danoff
S. K.
,
Sokolove
J.
,
Wagner
C. A.
,
Winchester
R.
,
Pappas
D. A.
,
Siegelman
S.
,
Connors
G.
,
Robinson
W. H.
,
Bathon
J. M.
.
2014
.
Association of fine specificity and repertoire expansion of anticitrullinated peptide antibodies with rheumatoid arthritis associated interstitial lung disease
.
Ann. Rheum. Dis.
73
:
1487
1494
.
39
Mikuls
T. R.
,
Payne
J. B.
,
Yu
F.
,
Thiele
G. M.
,
Reynolds
R. J.
,
Cannon
G. W.
,
Markt
J.
,
McGowan
D.
,
Kerr
G. S.
,
Redman
R. S.
, et al
.
2014
.
Periodontitis and Porphyromonas gingivalis in patients with rheumatoid arthritis
.
Arthritis Rheum. (Munch)
66
:
1090
1100
.
40
Gully
N.
,
Bright
R.
,
Marino
V.
,
Marchant
C.
,
Cantley
M.
,
Haynes
D.
,
Butler
C.
,
Dashper
S.
,
Reynolds
E.
,
Bartold
M.
.
2014
.
Porphyromonas gingivalis peptidylarginine deiminase, a key contributor in the pathogenesis of experimental periodontal disease and experimental arthritis
.
PLoS ONE
9
:
e100838
.
41
Gonzalez
S. M.
,
Payne
J. B.
,
Yu
F.
,
Thiele
G. M.
,
Erickson
A. R.
,
Johnson
P. G.
,
Schmid
M. J.
,
Cannon
G. W.
,
Kerr
G. S.
,
Reimold
A. M.
, et al
.
2015
.
Alveolar bone loss is associated with circulating anti-citrullinated protein antibody (ACPA) in patients with rheumatoid arthritis
.
J. Periodontol.
86
:
222
231
.
42
Young
K. A.
,
Deane
K. D.
,
Derber
L. A.
,
Hughes-Austin
J. M.
,
Wagner
C. A.
,
Sokolove
J.
,
Weisman
M. H.
,
Buckner
J. H.
,
Mikuls
T. R.
,
O’Dell
J. R.
, et al
.
2013
.
Relatives without rheumatoid arthritis show reactivity to anti-citrullinated protein/peptide antibodies that are associated with arthritis-related traits: studies of the etiology of rheumatoid arthritis
.
Arthritis Rheum.
65
:
1995
2004
.
43
Jiang
X.
,
Trouw
L. A.
,
van Wesemael
T. J.
,
Shi
J.
,
Bengtsson
C.
,
Källberg
H.
,
Malmström
V.
,
Israelsson
L.
,
Hreggvidsdottir
H.
,
Verduijn
W.
, et al
.
2014
.
Anti-CarP antibodies in two large cohorts of patients with rheumatoid arthritis and their relationship to genetic risk factors, cigarette smoking and other autoantibodies
.
Ann. Rheum. Dis.
73
:
1761
1768
.
44
Thiele
G. M.
,
Duryee
M. J.
,
Anderson
D. R.
,
Klassen
L. W.
,
Mohring
S. M.
,
Young
K. A.
,
Benissan-Messan
D.
,
Sayles
H.
,
Dusad
A.
,
Hunter
C. D.
, et al
.
2015
.
Malondialdehyde-acetaldehyde adducts and anti-malondialdehyde-acetaldehyde antibodies in rheumatoid arthritis
.
Arthritis Rheum. (Munch)
67
:
645
655
.

The author has no financial conflicts of interest.